sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1081, base_ring=CyclotomicField(506))
M = H._module
chi = DirichletCharacter(H, M([230,352]))
pari:[g,chi] = znchar(Mod(101,1081))
| Modulus: | \(1081\) | |
| Conductor: | \(1081\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(253\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1081}(2,\cdot)\)
\(\chi_{1081}(3,\cdot)\)
\(\chi_{1081}(4,\cdot)\)
\(\chi_{1081}(6,\cdot)\)
\(\chi_{1081}(8,\cdot)\)
\(\chi_{1081}(9,\cdot)\)
\(\chi_{1081}(12,\cdot)\)
\(\chi_{1081}(16,\cdot)\)
\(\chi_{1081}(18,\cdot)\)
\(\chi_{1081}(25,\cdot)\)
\(\chi_{1081}(27,\cdot)\)
\(\chi_{1081}(32,\cdot)\)
\(\chi_{1081}(36,\cdot)\)
\(\chi_{1081}(49,\cdot)\)
\(\chi_{1081}(50,\cdot)\)
\(\chi_{1081}(54,\cdot)\)
\(\chi_{1081}(55,\cdot)\)
\(\chi_{1081}(59,\cdot)\)
\(\chi_{1081}(64,\cdot)\)
\(\chi_{1081}(71,\cdot)\)
\(\chi_{1081}(72,\cdot)\)
\(\chi_{1081}(75,\cdot)\)
\(\chi_{1081}(81,\cdot)\)
\(\chi_{1081}(96,\cdot)\)
\(\chi_{1081}(98,\cdot)\)
\(\chi_{1081}(100,\cdot)\)
\(\chi_{1081}(101,\cdot)\)
\(\chi_{1081}(108,\cdot)\)
\(\chi_{1081}(110,\cdot)\)
\(\chi_{1081}(118,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((189,898)\) → \((e\left(\frac{5}{11}\right),e\left(\frac{16}{23}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 1081 }(101, a) \) |
\(1\) | \(1\) | \(e\left(\frac{109}{253}\right)\) | \(e\left(\frac{47}{253}\right)\) | \(e\left(\frac{218}{253}\right)\) | \(e\left(\frac{38}{253}\right)\) | \(e\left(\frac{156}{253}\right)\) | \(e\left(\frac{227}{253}\right)\) | \(e\left(\frac{74}{253}\right)\) | \(e\left(\frac{94}{253}\right)\) | \(e\left(\frac{147}{253}\right)\) | \(e\left(\frac{243}{253}\right)\) |
sage:chi.jacobi_sum(n)