Related objects

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:H = DirichletGroup(1080000) chi = H[29377]
 
Copy content pari:[g,chi] = znchar(Mod(29377,1080000))
 

Basic properties

Modulus: \(1080000\)
Conductor: \(625\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(500\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{625}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{500})$

Values on generators

\((978751,202501,1000001,29377)\) → \((1,1,1,e\left(\frac{1}{500}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)
\( \chi_{ 1080000 }(29377, a) \) \(-1\)\(1\)\(e\left(\frac{97}{100}\right)\)\(e\left(\frac{119}{125}\right)\)\(e\left(\frac{139}{500}\right)\)\(e\left(\frac{173}{500}\right)\)\(e\left(\frac{209}{250}\right)\)\(e\left(\frac{431}{500}\right)\)\(e\left(\frac{81}{250}\right)\)\(e\left(\frac{12}{125}\right)\)\(e\left(\frac{329}{500}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1080000 }(29377,a) \;\) at \(\;a = \) e.g. 2