Related objects

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:H = DirichletGroup(1080000) chi = H[1000001]
 
Copy content pari:[g,chi] = znchar(Mod(1000001,1080000))
 

Basic properties

Modulus: \(1080000\)
Conductor: \(27\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{27}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)

Values on generators

\((978751,202501,1000001,29377)\) → \((1,1,e\left(\frac{1}{18}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)
\( \chi_{ 1080000 }(1000001, a) \) \(-1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1080000 }(1000001,a) \;\) at \(\;a = \) e.g. 2