Properties

Label 10700.4191
Modulus $10700$
Conductor $10700$
Order $530$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10700, base_ring=CyclotomicField(530)) M = H._module chi = DirichletCharacter(H, M([265,106,175]))
 
Copy content pari:[g,chi] = znchar(Mod(4191,10700))
 

Basic properties

Modulus: \(10700\)
Conductor: \(10700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(530\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 10700.bl

\(\chi_{10700}(31,\cdot)\) \(\chi_{10700}(71,\cdot)\) \(\chi_{10700}(91,\cdot)\) \(\chi_{10700}(131,\cdot)\) \(\chi_{10700}(191,\cdot)\) \(\chi_{10700}(211,\cdot)\) \(\chi_{10700}(231,\cdot)\) \(\chi_{10700}(291,\cdot)\) \(\chi_{10700}(311,\cdot)\) \(\chi_{10700}(371,\cdot)\) \(\chi_{10700}(391,\cdot)\) \(\chi_{10700}(471,\cdot)\) \(\chi_{10700}(491,\cdot)\) \(\chi_{10700}(531,\cdot)\) \(\chi_{10700}(631,\cdot)\) \(\chi_{10700}(771,\cdot)\) \(\chi_{10700}(831,\cdot)\) \(\chi_{10700}(871,\cdot)\) \(\chi_{10700}(911,\cdot)\) \(\chi_{10700}(971,\cdot)\) \(\chi_{10700}(991,\cdot)\) \(\chi_{10700}(1031,\cdot)\) \(\chi_{10700}(1091,\cdot)\) \(\chi_{10700}(1231,\cdot)\) \(\chi_{10700}(1271,\cdot)\) \(\chi_{10700}(1291,\cdot)\) \(\chi_{10700}(1411,\cdot)\) \(\chi_{10700}(1471,\cdot)\) \(\chi_{10700}(1571,\cdot)\) \(\chi_{10700}(1591,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{265})$
Fixed field: Number field defined by a degree 530 polynomial (not computed)

Values on generators

\((5351,7277,6101)\) → \((-1,e\left(\frac{1}{5}\right),e\left(\frac{35}{106}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 10700 }(4191, a) \) \(1\)\(1\)\(e\left(\frac{7}{530}\right)\)\(e\left(\frac{37}{53}\right)\)\(e\left(\frac{7}{265}\right)\)\(e\left(\frac{511}{530}\right)\)\(e\left(\frac{112}{265}\right)\)\(e\left(\frac{93}{530}\right)\)\(e\left(\frac{453}{530}\right)\)\(e\left(\frac{377}{530}\right)\)\(e\left(\frac{91}{530}\right)\)\(e\left(\frac{21}{530}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 10700 }(4191,a) \;\) at \(\;a = \) e.g. 2