sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(10700, base_ring=CyclotomicField(530))
M = H._module
chi = DirichletCharacter(H, M([265,106,45]))
pari:[g,chi] = znchar(Mod(191,10700))
| Modulus: | \(10700\) | |
| Conductor: | \(10700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(530\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{10700}(31,\cdot)\)
\(\chi_{10700}(71,\cdot)\)
\(\chi_{10700}(91,\cdot)\)
\(\chi_{10700}(131,\cdot)\)
\(\chi_{10700}(191,\cdot)\)
\(\chi_{10700}(211,\cdot)\)
\(\chi_{10700}(231,\cdot)\)
\(\chi_{10700}(291,\cdot)\)
\(\chi_{10700}(311,\cdot)\)
\(\chi_{10700}(371,\cdot)\)
\(\chi_{10700}(391,\cdot)\)
\(\chi_{10700}(471,\cdot)\)
\(\chi_{10700}(491,\cdot)\)
\(\chi_{10700}(531,\cdot)\)
\(\chi_{10700}(631,\cdot)\)
\(\chi_{10700}(771,\cdot)\)
\(\chi_{10700}(831,\cdot)\)
\(\chi_{10700}(871,\cdot)\)
\(\chi_{10700}(911,\cdot)\)
\(\chi_{10700}(971,\cdot)\)
\(\chi_{10700}(991,\cdot)\)
\(\chi_{10700}(1031,\cdot)\)
\(\chi_{10700}(1091,\cdot)\)
\(\chi_{10700}(1231,\cdot)\)
\(\chi_{10700}(1271,\cdot)\)
\(\chi_{10700}(1291,\cdot)\)
\(\chi_{10700}(1411,\cdot)\)
\(\chi_{10700}(1471,\cdot)\)
\(\chi_{10700}(1571,\cdot)\)
\(\chi_{10700}(1591,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5351,7277,6101)\) → \((-1,e\left(\frac{1}{5}\right),e\left(\frac{9}{106}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 10700 }(191, a) \) |
\(1\) | \(1\) | \(e\left(\frac{447}{530}\right)\) | \(e\left(\frac{8}{53}\right)\) | \(e\left(\frac{182}{265}\right)\) | \(e\left(\frac{301}{530}\right)\) | \(e\left(\frac{262}{265}\right)\) | \(e\left(\frac{33}{530}\right)\) | \(e\left(\frac{383}{530}\right)\) | \(e\left(\frac{527}{530}\right)\) | \(e\left(\frac{511}{530}\right)\) | \(e\left(\frac{281}{530}\right)\) |
sage:chi.jacobi_sum(n)