sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1060, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,39,22]))
pari:[g,chi] = znchar(Mod(43,1060))
| Modulus: | \(1060\) | |
| Conductor: | \(1060\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1060}(7,\cdot)\)
\(\chi_{1060}(43,\cdot)\)
\(\chi_{1060}(123,\cdot)\)
\(\chi_{1060}(143,\cdot)\)
\(\chi_{1060}(163,\cdot)\)
\(\chi_{1060}(223,\cdot)\)
\(\chi_{1060}(303,\cdot)\)
\(\chi_{1060}(327,\cdot)\)
\(\chi_{1060}(343,\cdot)\)
\(\chi_{1060}(347,\cdot)\)
\(\chi_{1060}(467,\cdot)\)
\(\chi_{1060}(483,\cdot)\)
\(\chi_{1060}(547,\cdot)\)
\(\chi_{1060}(567,\cdot)\)
\(\chi_{1060}(587,\cdot)\)
\(\chi_{1060}(623,\cdot)\)
\(\chi_{1060}(643,\cdot)\)
\(\chi_{1060}(647,\cdot)\)
\(\chi_{1060}(727,\cdot)\)
\(\chi_{1060}(767,\cdot)\)
\(\chi_{1060}(907,\cdot)\)
\(\chi_{1060}(963,\cdot)\)
\(\chi_{1060}(983,\cdot)\)
\(\chi_{1060}(1047,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((531,637,161)\) → \((-1,-i,e\left(\frac{11}{26}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1060 }(43, a) \) |
\(1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(i\) | \(e\left(\frac{43}{52}\right)\) |
sage:chi.jacobi_sum(n)