sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1060, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,39,33]))
pari:[g,chi] = znchar(Mod(243,1060))
| Modulus: | \(1060\) | |
| Conductor: | \(1060\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1060}(3,\cdot)\)
\(\chi_{1060}(27,\cdot)\)
\(\chi_{1060}(67,\cdot)\)
\(\chi_{1060}(87,\cdot)\)
\(\chi_{1060}(127,\cdot)\)
\(\chi_{1060}(167,\cdot)\)
\(\chi_{1060}(243,\cdot)\)
\(\chi_{1060}(287,\cdot)\)
\(\chi_{1060}(363,\cdot)\)
\(\chi_{1060}(403,\cdot)\)
\(\chi_{1060}(443,\cdot)\)
\(\chi_{1060}(463,\cdot)\)
\(\chi_{1060}(503,\cdot)\)
\(\chi_{1060}(527,\cdot)\)
\(\chi_{1060}(603,\cdot)\)
\(\chi_{1060}(687,\cdot)\)
\(\chi_{1060}(707,\cdot)\)
\(\chi_{1060}(747,\cdot)\)
\(\chi_{1060}(783,\cdot)\)
\(\chi_{1060}(807,\cdot)\)
\(\chi_{1060}(843,\cdot)\)
\(\chi_{1060}(883,\cdot)\)
\(\chi_{1060}(903,\cdot)\)
\(\chi_{1060}(987,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((531,637,161)\) → \((-1,-i,e\left(\frac{33}{52}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1060 }(243, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(-1\) | \(e\left(\frac{8}{13}\right)\) |
sage:chi.jacobi_sum(n)