sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1060, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,26,37]))
pari:[g,chi] = znchar(Mod(19,1060))
| Modulus: | \(1060\) | |
| Conductor: | \(1060\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1060}(19,\cdot)\)
\(\chi_{1060}(39,\cdot)\)
\(\chi_{1060}(79,\cdot)\)
\(\chi_{1060}(139,\cdot)\)
\(\chi_{1060}(179,\cdot)\)
\(\chi_{1060}(239,\cdot)\)
\(\chi_{1060}(279,\cdot)\)
\(\chi_{1060}(299,\cdot)\)
\(\chi_{1060}(339,\cdot)\)
\(\chi_{1060}(359,\cdot)\)
\(\chi_{1060}(379,\cdot)\)
\(\chi_{1060}(419,\cdot)\)
\(\chi_{1060}(459,\cdot)\)
\(\chi_{1060}(479,\cdot)\)
\(\chi_{1060}(499,\cdot)\)
\(\chi_{1060}(639,\cdot)\)
\(\chi_{1060}(739,\cdot)\)
\(\chi_{1060}(879,\cdot)\)
\(\chi_{1060}(899,\cdot)\)
\(\chi_{1060}(919,\cdot)\)
\(\chi_{1060}(959,\cdot)\)
\(\chi_{1060}(999,\cdot)\)
\(\chi_{1060}(1019,\cdot)\)
\(\chi_{1060}(1039,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((531,637,161)\) → \((-1,-1,e\left(\frac{37}{52}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1060 }(19, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(-i\) | \(e\left(\frac{15}{52}\right)\) |
sage:chi.jacobi_sum(n)