Properties

Label 1053.j
Modulus $1053$
Conductor $13$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(811,1053)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1053\)
Conductor: \(13\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 13.d
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.2197.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{1053}(811,\cdot)\) \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(i\) \(i\) \(-1\) \(i\) \(1\) \(1\) \(-1\)
\(\chi_{1053}(892,\cdot)\) \(-1\) \(1\) \(i\) \(-1\) \(i\) \(-i\) \(-i\) \(-1\) \(-i\) \(1\) \(1\) \(-1\)