Properties

Label 1050.587
Modulus $1050$
Conductor $525$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,9,10]))
 
Copy content pari:[g,chi] = znchar(Mod(587,1050))
 

Basic properties

Modulus: \(1050\)
Conductor: \(525\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{525}(62,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1050.bj

\(\chi_{1050}(83,\cdot)\) \(\chi_{1050}(167,\cdot)\) \(\chi_{1050}(377,\cdot)\) \(\chi_{1050}(503,\cdot)\) \(\chi_{1050}(587,\cdot)\) \(\chi_{1050}(713,\cdot)\) \(\chi_{1050}(797,\cdot)\) \(\chi_{1050}(923,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((701,127,451)\) → \((-1,e\left(\frac{9}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1050 }(587, a) \) \(-1\)\(1\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1050 }(587,a) \;\) at \(\;a = \) e.g. 2