sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1050, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,1,2]))
pari:[g,chi] = znchar(Mod(1007,1050))
\(\chi_{1050}(293,\cdot)\)
\(\chi_{1050}(1007,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((701,127,451)\) → \((-1,i,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 1050 }(1007, a) \) |
\(-1\) | \(1\) | \(-1\) | \(i\) | \(i\) | \(1\) | \(i\) | \(1\) | \(-1\) | \(i\) | \(1\) | \(-i\) |
sage:chi.jacobi_sum(n)