sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1024, base_ring=CyclotomicField(256))
M = H._module
chi = DirichletCharacter(H, M([128,117]))
pari:[g,chi] = znchar(Mod(139,1024))
Modulus: | \(1024\) | |
Conductor: | \(1024\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(256\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1024}(3,\cdot)\)
\(\chi_{1024}(11,\cdot)\)
\(\chi_{1024}(19,\cdot)\)
\(\chi_{1024}(27,\cdot)\)
\(\chi_{1024}(35,\cdot)\)
\(\chi_{1024}(43,\cdot)\)
\(\chi_{1024}(51,\cdot)\)
\(\chi_{1024}(59,\cdot)\)
\(\chi_{1024}(67,\cdot)\)
\(\chi_{1024}(75,\cdot)\)
\(\chi_{1024}(83,\cdot)\)
\(\chi_{1024}(91,\cdot)\)
\(\chi_{1024}(99,\cdot)\)
\(\chi_{1024}(107,\cdot)\)
\(\chi_{1024}(115,\cdot)\)
\(\chi_{1024}(123,\cdot)\)
\(\chi_{1024}(131,\cdot)\)
\(\chi_{1024}(139,\cdot)\)
\(\chi_{1024}(147,\cdot)\)
\(\chi_{1024}(155,\cdot)\)
\(\chi_{1024}(163,\cdot)\)
\(\chi_{1024}(171,\cdot)\)
\(\chi_{1024}(179,\cdot)\)
\(\chi_{1024}(187,\cdot)\)
\(\chi_{1024}(195,\cdot)\)
\(\chi_{1024}(203,\cdot)\)
\(\chi_{1024}(211,\cdot)\)
\(\chi_{1024}(219,\cdot)\)
\(\chi_{1024}(227,\cdot)\)
\(\chi_{1024}(235,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1023,5)\) → \((-1,e\left(\frac{117}{256}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 1024 }(139, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{255}{256}\right)\) | \(e\left(\frac{117}{256}\right)\) | \(e\left(\frac{105}{128}\right)\) | \(e\left(\frac{127}{128}\right)\) | \(e\left(\frac{217}{256}\right)\) | \(e\left(\frac{59}{256}\right)\) | \(e\left(\frac{29}{64}\right)\) | \(e\left(\frac{19}{64}\right)\) | \(e\left(\frac{131}{256}\right)\) | \(e\left(\frac{209}{256}\right)\) |
sage:chi.jacobi_sum(n)