sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(101920, base_ring=CyclotomicField(168))
M = H._module
chi = DirichletCharacter(H, M([84,21,84,132,56]))
pari:[g,chi] = znchar(Mod(47739,101920))
| Modulus: | \(101920\) | |
| Conductor: | \(101920\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(168\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{101920}(139,\cdot)\)
\(\chi_{101920}(419,\cdot)\)
\(\chi_{101920}(3779,\cdot)\)
\(\chi_{101920}(4059,\cdot)\)
\(\chi_{101920}(7419,\cdot)\)
\(\chi_{101920}(7699,\cdot)\)
\(\chi_{101920}(11059,\cdot)\)
\(\chi_{101920}(11339,\cdot)\)
\(\chi_{101920}(14979,\cdot)\)
\(\chi_{101920}(18339,\cdot)\)
\(\chi_{101920}(21979,\cdot)\)
\(\chi_{101920}(22259,\cdot)\)
\(\chi_{101920}(25619,\cdot)\)
\(\chi_{101920}(25899,\cdot)\)
\(\chi_{101920}(29259,\cdot)\)
\(\chi_{101920}(29539,\cdot)\)
\(\chi_{101920}(32899,\cdot)\)
\(\chi_{101920}(33179,\cdot)\)
\(\chi_{101920}(36539,\cdot)\)
\(\chi_{101920}(36819,\cdot)\)
\(\chi_{101920}(40459,\cdot)\)
\(\chi_{101920}(43819,\cdot)\)
\(\chi_{101920}(47459,\cdot)\)
\(\chi_{101920}(47739,\cdot)\)
\(\chi_{101920}(51099,\cdot)\)
\(\chi_{101920}(51379,\cdot)\)
\(\chi_{101920}(54739,\cdot)\)
\(\chi_{101920}(55019,\cdot)\)
\(\chi_{101920}(58379,\cdot)\)
\(\chi_{101920}(58659,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((95551,12741,81537,18721,7841)\) → \((-1,e\left(\frac{1}{8}\right),-1,e\left(\frac{11}{14}\right),e\left(\frac{1}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) | \(33\) |
| \( \chi_{ 101920 }(47739, a) \) |
\(1\) | \(1\) | \(e\left(\frac{83}{168}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{149}{168}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{27}{56}\right)\) | \(e\left(\frac{143}{168}\right)\) | \(1\) | \(e\left(\frac{8}{21}\right)\) |
sage:chi.jacobi_sum(n)