Properties

Label 101920.47739
Modulus $101920$
Conductor $101920$
Order $168$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(101920, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([84,21,84,132,56]))
 
Copy content pari:[g,chi] = znchar(Mod(47739,101920))
 

Basic properties

Modulus: \(101920\)
Conductor: \(101920\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 101920.cuo

\(\chi_{101920}(139,\cdot)\) \(\chi_{101920}(419,\cdot)\) \(\chi_{101920}(3779,\cdot)\) \(\chi_{101920}(4059,\cdot)\) \(\chi_{101920}(7419,\cdot)\) \(\chi_{101920}(7699,\cdot)\) \(\chi_{101920}(11059,\cdot)\) \(\chi_{101920}(11339,\cdot)\) \(\chi_{101920}(14979,\cdot)\) \(\chi_{101920}(18339,\cdot)\) \(\chi_{101920}(21979,\cdot)\) \(\chi_{101920}(22259,\cdot)\) \(\chi_{101920}(25619,\cdot)\) \(\chi_{101920}(25899,\cdot)\) \(\chi_{101920}(29259,\cdot)\) \(\chi_{101920}(29539,\cdot)\) \(\chi_{101920}(32899,\cdot)\) \(\chi_{101920}(33179,\cdot)\) \(\chi_{101920}(36539,\cdot)\) \(\chi_{101920}(36819,\cdot)\) \(\chi_{101920}(40459,\cdot)\) \(\chi_{101920}(43819,\cdot)\) \(\chi_{101920}(47459,\cdot)\) \(\chi_{101920}(47739,\cdot)\) \(\chi_{101920}(51099,\cdot)\) \(\chi_{101920}(51379,\cdot)\) \(\chi_{101920}(54739,\cdot)\) \(\chi_{101920}(55019,\cdot)\) \(\chi_{101920}(58379,\cdot)\) \(\chi_{101920}(58659,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

Values on generators

\((95551,12741,81537,18721,7841)\) → \((-1,e\left(\frac{1}{8}\right),-1,e\left(\frac{11}{14}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 101920 }(47739, a) \) \(1\)\(1\)\(e\left(\frac{83}{168}\right)\)\(e\left(\frac{83}{84}\right)\)\(e\left(\frac{149}{168}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{79}{84}\right)\)\(e\left(\frac{27}{56}\right)\)\(e\left(\frac{143}{168}\right)\)\(1\)\(e\left(\frac{8}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 101920 }(47739,a) \;\) at \(\;a = \) e.g. 2