sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1016, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,63,116]))
pari:[g,chi] = znchar(Mod(21,1016))
| Modulus: | \(1016\) | |
| Conductor: | \(1016\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1016}(13,\cdot)\)
\(\chi_{1016}(21,\cdot)\)
\(\chi_{1016}(69,\cdot)\)
\(\chi_{1016}(157,\cdot)\)
\(\chi_{1016}(189,\cdot)\)
\(\chi_{1016}(197,\cdot)\)
\(\chi_{1016}(269,\cdot)\)
\(\chi_{1016}(285,\cdot)\)
\(\chi_{1016}(325,\cdot)\)
\(\chi_{1016}(333,\cdot)\)
\(\chi_{1016}(453,\cdot)\)
\(\chi_{1016}(469,\cdot)\)
\(\chi_{1016}(485,\cdot)\)
\(\chi_{1016}(501,\cdot)\)
\(\chi_{1016}(517,\cdot)\)
\(\chi_{1016}(525,\cdot)\)
\(\chi_{1016}(549,\cdot)\)
\(\chi_{1016}(557,\cdot)\)
\(\chi_{1016}(589,\cdot)\)
\(\chi_{1016}(621,\cdot)\)
\(\chi_{1016}(629,\cdot)\)
\(\chi_{1016}(653,\cdot)\)
\(\chi_{1016}(661,\cdot)\)
\(\chi_{1016}(669,\cdot)\)
\(\chi_{1016}(677,\cdot)\)
\(\chi_{1016}(709,\cdot)\)
\(\chi_{1016}(717,\cdot)\)
\(\chi_{1016}(733,\cdot)\)
\(\chi_{1016}(773,\cdot)\)
\(\chi_{1016}(797,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((255,509,257)\) → \((1,-1,e\left(\frac{58}{63}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 1016 }(21, a) \) |
\(1\) | \(1\) | \(e\left(\frac{53}{126}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{37}{126}\right)\) |
sage:chi.jacobi_sum(n)