sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1012, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,2,5]))
pari:[g,chi] = znchar(Mod(873,1012))
\(\chi_{1012}(137,\cdot)\)
\(\chi_{1012}(229,\cdot)\)
\(\chi_{1012}(597,\cdot)\)
\(\chi_{1012}(873,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((507,277,925)\) → \((1,e\left(\frac{1}{5}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | \(25\) |
| \( \chi_{ 1012 }(873, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) |
sage:chi.jacobi_sum(n)