Properties

Label 1012.441
Modulus $1012$
Conductor $23$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1012, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([0,0,4]))
 
Copy content pari:[g,chi] = znchar(Mod(441,1012))
 

Basic properties

Modulus: \(1012\)
Conductor: \(23\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(11\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{23}(4,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1012.q

\(\chi_{1012}(133,\cdot)\) \(\chi_{1012}(177,\cdot)\) \(\chi_{1012}(265,\cdot)\) \(\chi_{1012}(353,\cdot)\) \(\chi_{1012}(397,\cdot)\) \(\chi_{1012}(441,\cdot)\) \(\chi_{1012}(485,\cdot)\) \(\chi_{1012}(749,\cdot)\) \(\chi_{1012}(837,\cdot)\) \(\chi_{1012}(969,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{23})^+\)

Values on generators

\((507,277,925)\) → \((1,1,e\left(\frac{2}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(25\)
\( \chi_{ 1012 }(441, a) \) \(1\)\(1\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{4}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1012 }(441,a) \;\) at \(\;a = \) e.g. 2