sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1011, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([28,1]))
pari:[g,chi] = znchar(Mod(458,1011))
| Modulus: | \(1011\) | |
| Conductor: | \(1011\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1011}(47,\cdot)\)
\(\chi_{1011}(56,\cdot)\)
\(\chi_{1011}(137,\cdot)\)
\(\chi_{1011}(200,\cdot)\)
\(\chi_{1011}(281,\cdot)\)
\(\chi_{1011}(290,\cdot)\)
\(\chi_{1011}(344,\cdot)\)
\(\chi_{1011}(362,\cdot)\)
\(\chi_{1011}(380,\cdot)\)
\(\chi_{1011}(458,\cdot)\)
\(\chi_{1011}(551,\cdot)\)
\(\chi_{1011}(626,\cdot)\)
\(\chi_{1011}(635,\cdot)\)
\(\chi_{1011}(647,\cdot)\)
\(\chi_{1011}(668,\cdot)\)
\(\chi_{1011}(680,\cdot)\)
\(\chi_{1011}(701,\cdot)\)
\(\chi_{1011}(713,\cdot)\)
\(\chi_{1011}(722,\cdot)\)
\(\chi_{1011}(797,\cdot)\)
\(\chi_{1011}(890,\cdot)\)
\(\chi_{1011}(968,\cdot)\)
\(\chi_{1011}(986,\cdot)\)
\(\chi_{1011}(1004,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((338,10)\) → \((-1,e\left(\frac{1}{56}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 1011 }(458, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{56}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{56}\right)\) | \(e\left(\frac{31}{56}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) |
sage:chi.jacobi_sum(n)