Properties

Label 100315.r
Modulus 100315100315
Conductor 100315100315
Order 57325732
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(5732))
 
M = H._module
 
chi = DirichletCharacter(H, M([1433,4152]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2,100315))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 100315100315
Conductor: 100315100315
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 57325732
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ5732)\Q(\zeta_{5732})
Fixed field: Number field defined by a degree 5732 polynomial (not computed)

First 31 of 2864 characters in Galois orbit

Character 1-1 11 22 33 44 66 77 88 99 1111 1212 1313
χ100315(2,)\chi_{100315}(2,\cdot) 1-1 11 e(32655732)e\left(\frac{3265}{5732}\right) e(53795732)e\left(\frac{5379}{5732}\right) e(3992866)e\left(\frac{399}{2866}\right) e(7281433)e\left(\frac{728}{1433}\right) e(21135732)e\left(\frac{2113}{5732}\right) e(40635732)e\left(\frac{4063}{5732}\right) e(25132866)e\left(\frac{2513}{2866}\right) e(12631433)e\left(\frac{1263}{1433}\right) e(4455732)e\left(\frac{445}{5732}\right) e(42515732)e\left(\frac{4251}{5732}\right)
χ100315(8,)\chi_{100315}(8,\cdot) 1-1 11 e(40635732)e\left(\frac{4063}{5732}\right) e(46735732)e\left(\frac{4673}{5732}\right) e(11972866)e\left(\frac{1197}{2866}\right) e(7511433)e\left(\frac{751}{1433}\right) e(6075732)e\left(\frac{607}{5732}\right) e(7255732)e\left(\frac{725}{5732}\right) e(18072866)e\left(\frac{1807}{2866}\right) e(9231433)e\left(\frac{923}{1433}\right) e(13355732)e\left(\frac{1335}{5732}\right) e(12895732)e\left(\frac{1289}{5732}\right)
χ100315(32,)\chi_{100315}(32,\cdot) 1-1 11 e(48615732)e\left(\frac{4861}{5732}\right) e(39675732)e\left(\frac{3967}{5732}\right) e(19952866)e\left(\frac{1995}{2866}\right) e(7741433)e\left(\frac{774}{1433}\right) e(48335732)e\left(\frac{4833}{5732}\right) e(31195732)e\left(\frac{3119}{5732}\right) e(11012866)e\left(\frac{1101}{2866}\right) e(5831433)e\left(\frac{583}{1433}\right) e(22255732)e\left(\frac{2225}{5732}\right) e(40595732)e\left(\frac{4059}{5732}\right)
χ100315(47,)\chi_{100315}(47,\cdot) 1-1 11 e(15855732)e\left(\frac{1585}{5732}\right) e(14355732)e\left(\frac{1435}{5732}\right) e(15852866)e\left(\frac{1585}{2866}\right) e(7551433)e\left(\frac{755}{1433}\right) e(19655732)e\left(\frac{1965}{5732}\right) e(47555732)e\left(\frac{4755}{5732}\right) e(14352866)e\left(\frac{1435}{2866}\right) e(13001433)e\left(\frac{1300}{1433}\right) e(46055732)e\left(\frac{4605}{5732}\right) e(26435732)e\left(\frac{2643}{5732}\right)
χ100315(73,)\chi_{100315}(73,\cdot) 1-1 11 e(14195732)e\left(\frac{1419}{5732}\right) e(53175732)e\left(\frac{5317}{5732}\right) e(14192866)e\left(\frac{1419}{2866}\right) e(2511433)e\left(\frac{251}{1433}\right) e(56835732)e\left(\frac{5683}{5732}\right) e(42575732)e\left(\frac{4257}{5732}\right) e(24512866)e\left(\frac{2451}{2866}\right) e(10871433)e\left(\frac{1087}{1433}\right) e(24235732)e\left(\frac{2423}{5732}\right) e(11335732)e\left(\frac{1133}{5732}\right)
χ100315(87,)\chi_{100315}(87,\cdot) 1-1 11 e(42775732)e\left(\frac{4277}{5732}\right) e(13955732)e\left(\frac{1395}{5732}\right) e(14112866)e\left(\frac{1411}{2866}\right) e(14181433)e\left(\frac{1418}{1433}\right) e(27895732)e\left(\frac{2789}{5732}\right) e(13675732)e\left(\frac{1367}{5732}\right) e(13952866)e\left(\frac{1395}{2866}\right) e(10941433)e\left(\frac{1094}{1433}\right) e(42175732)e\left(\frac{4217}{5732}\right) e(13715732)e\left(\frac{1371}{5732}\right)
χ100315(128,)\chi_{100315}(128,\cdot) 1-1 11 e(56595732)e\left(\frac{5659}{5732}\right) e(32615732)e\left(\frac{3261}{5732}\right) e(27932866)e\left(\frac{2793}{2866}\right) e(7971433)e\left(\frac{797}{1433}\right) e(33275732)e\left(\frac{3327}{5732}\right) e(55135732)e\left(\frac{5513}{5732}\right) e(3952866)e\left(\frac{395}{2866}\right) e(2431433)e\left(\frac{243}{1433}\right) e(31155732)e\left(\frac{3115}{5732}\right) e(10975732)e\left(\frac{1097}{5732}\right)
χ100315(137,)\chi_{100315}(137,\cdot) 1-1 11 e(45615732)e\left(\frac{4561}{5732}\right) e(44915732)e\left(\frac{4491}{5732}\right) e(16952866)e\left(\frac{1695}{2866}\right) e(8301433)e\left(\frac{830}{1433}\right) e(9175732)e\left(\frac{917}{5732}\right) e(22195732)e\left(\frac{2219}{5732}\right) e(16252866)e\left(\frac{1625}{2866}\right) e(1291433)e\left(\frac{129}{1433}\right) e(21495732)e\left(\frac{2149}{5732}\right) e(875732)e\left(\frac{87}{5732}\right)
χ100315(188,)\chi_{100315}(188,\cdot) 1-1 11 e(23835732)e\left(\frac{2383}{5732}\right) e(7295732)e\left(\frac{729}{5732}\right) e(23832866)e\left(\frac{2383}{2866}\right) e(7781433)e\left(\frac{778}{1433}\right) e(4595732)e\left(\frac{459}{5732}\right) e(14175732)e\left(\frac{1417}{5732}\right) e(7292866)e\left(\frac{729}{2866}\right) e(9601433)e\left(\frac{960}{1433}\right) e(54955732)e\left(\frac{5495}{5732}\right) e(54135732)e\left(\frac{5413}{5732}\right)
χ100315(223,)\chi_{100315}(223,\cdot) 1-1 11 e(25675732)e\left(\frac{2567}{5732}\right) e(20895732)e\left(\frac{2089}{5732}\right) e(25672866)e\left(\frac{2567}{2866}\right) e(11641433)e\left(\frac{1164}{1433}\right) e(11035732)e\left(\frac{1103}{5732}\right) e(19695732)e\left(\frac{1969}{5732}\right) e(20892866)e\left(\frac{2089}{2866}\right) e(7991433)e\left(\frac{799}{1433}\right) e(14915732)e\left(\frac{1491}{5732}\right) e(28055732)e\left(\frac{2805}{5732}\right)
χ100315(292,)\chi_{100315}(292,\cdot) 1-1 11 e(22175732)e\left(\frac{2217}{5732}\right) e(46115732)e\left(\frac{4611}{5732}\right) e(22172866)e\left(\frac{2217}{2866}\right) e(2741433)e\left(\frac{274}{1433}\right) e(41775732)e\left(\frac{4177}{5732}\right) e(9195732)e\left(\frac{919}{5732}\right) e(17452866)e\left(\frac{1745}{2866}\right) e(7471433)e\left(\frac{747}{1433}\right) e(33135732)e\left(\frac{3313}{5732}\right) e(39035732)e\left(\frac{3903}{5732}\right)
χ100315(317,)\chi_{100315}(317,\cdot) 1-1 11 e(9055732)e\left(\frac{905}{5732}\right) e(33875732)e\left(\frac{3387}{5732}\right) e(9052866)e\left(\frac{905}{2866}\right) e(10731433)e\left(\frac{1073}{1433}\right) e(53175732)e\left(\frac{5317}{5732}\right) e(27155732)e\left(\frac{2715}{5732}\right) e(5212866)e\left(\frac{521}{2866}\right) e(4621433)e\left(\frac{462}{1433}\right) e(51975732)e\left(\frac{5197}{5732}\right) e(28115732)e\left(\frac{2811}{5732}\right)
χ100315(348,)\chi_{100315}(348,\cdot) 1-1 11 e(50755732)e\left(\frac{5075}{5732}\right) e(6895732)e\left(\frac{689}{5732}\right) e(22092866)e\left(\frac{2209}{2866}\right) e(81433)e\left(\frac{8}{1433}\right) e(12835732)e\left(\frac{1283}{5732}\right) e(37615732)e\left(\frac{3761}{5732}\right) e(6892866)e\left(\frac{689}{2866}\right) e(7541433)e\left(\frac{754}{1433}\right) e(51075732)e\left(\frac{5107}{5732}\right) e(41415732)e\left(\frac{4141}{5732}\right)
χ100315(357,)\chi_{100315}(357,\cdot) 1-1 11 e(52855732)e\left(\frac{5285}{5732}\right) e(26155732)e\left(\frac{2615}{5732}\right) e(24192866)e\left(\frac{2419}{2866}\right) e(5421433)e\left(\frac{542}{1433}\right) e(5855732)e\left(\frac{585}{5732}\right) e(43915732)e\left(\frac{4391}{5732}\right) e(26152866)e\left(\frac{2615}{2866}\right) e(2121433)e\left(\frac{212}{1433}\right) e(17215732)e\left(\frac{1721}{5732}\right) e(435732)e\left(\frac{43}{5732}\right)
χ100315(363,)\chi_{100315}(363,\cdot) 1-1 11 e(40195732)e\left(\frac{4019}{5732}\right) e(45975732)e\left(\frac{4597}{5732}\right) e(11532866)e\left(\frac{1153}{2866}\right) e(7211433)e\left(\frac{721}{1433}\right) e(33195732)e\left(\frac{3319}{5732}\right) e(5935732)e\left(\frac{593}{5732}\right) e(17312866)e\left(\frac{1731}{2866}\right) e(2451433)e\left(\frac{245}{1433}\right) e(11715732)e\left(\frac{1171}{5732}\right) e(11655732)e\left(\frac{1165}{5732}\right)
χ100315(377,)\chi_{100315}(377,\cdot) 1-1 11 e(31495732)e\left(\frac{3149}{5732}\right) e(15315732)e\left(\frac{1531}{5732}\right) e(2832866)e\left(\frac{283}{2866}\right) e(11701433)e\left(\frac{1170}{1433}\right) e(45735732)e\left(\frac{4573}{5732}\right) e(37155732)e\left(\frac{3715}{5732}\right) e(15312866)e\left(\frac{1531}{2866}\right) e(6481433)e\left(\frac{648}{1433}\right) e(20975732)e\left(\frac{2097}{5732}\right) e(34035732)e\left(\frac{3403}{5732}\right)
χ100315(398,)\chi_{100315}(398,\cdot) 1-1 11 e(54315732)e\left(\frac{5431}{5732}\right) e(18255732)e\left(\frac{1825}{5732}\right) e(25652866)e\left(\frac{2565}{2866}\right) e(3811433)e\left(\frac{381}{1433}\right) e(53955732)e\left(\frac{5395}{5732}\right) e(48295732)e\left(\frac{4829}{5732}\right) e(18252866)e\left(\frac{1825}{2866}\right) e(11591433)e\left(\frac{1159}{1433}\right) e(12235732)e\left(\frac{1223}{5732}\right) e(35815732)e\left(\frac{3581}{5732}\right)
χ100315(422,)\chi_{100315}(422,\cdot) 1-1 11 e(12015732)e\left(\frac{1201}{5732}\right) e(23355732)e\left(\frac{2335}{5732}\right) e(12012866)e\left(\frac{1201}{2866}\right) e(8841433)e\left(\frac{884}{1433}\right) e(6215732)e\left(\frac{621}{5732}\right) e(36035732)e\left(\frac{3603}{5732}\right) e(23352866)e\left(\frac{2335}{2866}\right) e(2031433)e\left(\frac{203}{1433}\right) e(47375732)e\left(\frac{4737}{5732}\right) e(26035732)e\left(\frac{2603}{5732}\right)
χ100315(512,)\chi_{100315}(512,\cdot) 1-1 11 e(7255732)e\left(\frac{725}{5732}\right) e(25555732)e\left(\frac{2555}{5732}\right) e(7252866)e\left(\frac{725}{2866}\right) e(8201433)e\left(\frac{820}{1433}\right) e(18215732)e\left(\frac{1821}{5732}\right) e(21755732)e\left(\frac{2175}{5732}\right) e(25552866)e\left(\frac{2555}{2866}\right) e(13361433)e\left(\frac{1336}{1433}\right) e(40055732)e\left(\frac{4005}{5732}\right) e(38675732)e\left(\frac{3867}{5732}\right)
χ100315(548,)\chi_{100315}(548,\cdot) 1-1 11 e(53595732)e\left(\frac{5359}{5732}\right) e(37855732)e\left(\frac{3785}{5732}\right) e(24932866)e\left(\frac{2493}{2866}\right) e(8531433)e\left(\frac{853}{1433}\right) e(51435732)e\left(\frac{5143}{5732}\right) e(46135732)e\left(\frac{4613}{5732}\right) e(9192866)e\left(\frac{919}{2866}\right) e(12221433)e\left(\frac{1222}{1433}\right) e(30395732)e\left(\frac{3039}{5732}\right) e(28575732)e\left(\frac{2857}{5732}\right)
χ100315(562,)\chi_{100315}(562,\cdot) 1-1 11 e(12455732)e\left(\frac{1245}{5732}\right) e(24115732)e\left(\frac{2411}{5732}\right) e(12452866)e\left(\frac{1245}{2866}\right) e(9141433)e\left(\frac{914}{1433}\right) e(36415732)e\left(\frac{3641}{5732}\right) e(37355732)e\left(\frac{3735}{5732}\right) e(24112866)e\left(\frac{2411}{2866}\right) e(8811433)e\left(\frac{881}{1433}\right) e(49015732)e\left(\frac{4901}{5732}\right) e(27275732)e\left(\frac{2727}{5732}\right)
χ100315(613,)\chi_{100315}(613,\cdot) 1-1 11 e(39075732)e\left(\frac{3907}{5732}\right) e(12775732)e\left(\frac{1277}{5732}\right) e(10412866)e\left(\frac{1041}{2866}\right) e(12961433)e\left(\frac{1296}{1433}\right) e(29275732)e\left(\frac{2927}{5732}\right) e(2575732)e\left(\frac{257}{5732}\right) e(12772866)e\left(\frac{1277}{2866}\right) e(3431433)e\left(\frac{343}{1433}\right) e(33595732)e\left(\frac{3359}{5732}\right) e(44975732)e\left(\frac{4497}{5732}\right)
χ100315(627,)\chi_{100315}(627,\cdot) 1-1 11 e(37375732)e\left(\frac{3737}{5732}\right) e(46315732)e\left(\frac{4631}{5732}\right) e(8712866)e\left(\frac{871}{2866}\right) e(6591433)e\left(\frac{659}{1433}\right) e(37655732)e\left(\frac{3765}{5732}\right) e(54795732)e\left(\frac{5479}{5732}\right) e(17652866)e\left(\frac{1765}{2866}\right) e(8501433)e\left(\frac{850}{1433}\right) e(6415732)e\left(\frac{641}{5732}\right) e(45395732)e\left(\frac{4539}{5732}\right)
χ100315(697,)\chi_{100315}(697,\cdot) 1-1 11 e(51535732)e\left(\frac{5153}{5732}\right) e(23875732)e\left(\frac{2387}{5732}\right) e(22872866)e\left(\frac{2287}{2866}\right) e(4521433)e\left(\frac{452}{1433}\right) e(29895732)e\left(\frac{2989}{5732}\right) e(39955732)e\left(\frac{3995}{5732}\right) e(23872866)e\left(\frac{2387}{2866}\right) e(10441433)e\left(\frac{1044}{1433}\right) e(12295732)e\left(\frac{1229}{5732}\right) e(54035732)e\left(\frac{5403}{5732}\right)
χ100315(752,)\chi_{100315}(752,\cdot) 1-1 11 e(31815732)e\left(\frac{3181}{5732}\right) e(235732)e\left(\frac{23}{5732}\right) e(3152866)e\left(\frac{315}{2866}\right) e(8011433)e\left(\frac{801}{1433}\right) e(46855732)e\left(\frac{4685}{5732}\right) e(38115732)e\left(\frac{3811}{5732}\right) e(232866)e\left(\frac{23}{2866}\right) e(6201433)e\left(\frac{620}{1433}\right) e(6535732)e\left(\frac{653}{5732}\right) e(24515732)e\left(\frac{2451}{5732}\right)
χ100315(753,)\chi_{100315}(753,\cdot) 1-1 11 e(17235732)e\left(\frac{1723}{5732}\right) e(53215732)e\left(\frac{5321}{5732}\right) e(17232866)e\left(\frac{1723}{2866}\right) e(3281433)e\left(\frac{328}{1433}\right) e(10155732)e\left(\frac{1015}{5732}\right) e(51695732)e\left(\frac{5169}{5732}\right) e(24552866)e\left(\frac{2455}{2866}\right) e(8211433)e\left(\frac{821}{1433}\right) e(30355732)e\left(\frac{3035}{5732}\right) e(35535732)e\left(\frac{3553}{5732}\right)
χ100315(877,)\chi_{100315}(877,\cdot) 1-1 11 e(39575732)e\left(\frac{3957}{5732}\right) e(50115732)e\left(\frac{5011}{5732}\right) e(10912866)e\left(\frac{1091}{2866}\right) e(8091433)e\left(\frac{809}{1433}\right) e(16695732)e\left(\frac{1669}{5732}\right) e(4075732)e\left(\frac{407}{5732}\right) e(21452866)e\left(\frac{2145}{2866}\right) e(13741433)e\left(\frac{1374}{1433}\right) e(14615732)e\left(\frac{1461}{5732}\right) e(51595732)e\left(\frac{5159}{5732}\right)
χ100315(892,)\chi_{100315}(892,\cdot) 1-1 11 e(33655732)e\left(\frac{3365}{5732}\right) e(13835732)e\left(\frac{1383}{5732}\right) e(4992866)e\left(\frac{499}{2866}\right) e(11871433)e\left(\frac{1187}{1433}\right) e(53295732)e\left(\frac{5329}{5732}\right) e(43635732)e\left(\frac{4363}{5732}\right) e(13832866)e\left(\frac{1383}{2866}\right) e(4591433)e\left(\frac{459}{1433}\right) e(23815732)e\left(\frac{2381}{5732}\right) e(55755732)e\left(\frac{5575}{5732}\right)
χ100315(913,)\chi_{100315}(913,\cdot) 1-1 11 e(17955732)e\left(\frac{1795}{5732}\right) e(33615732)e\left(\frac{3361}{5732}\right) e(17952866)e\left(\frac{1795}{2866}\right) e(12891433)e\left(\frac{1289}{1433}\right) e(12675732)e\left(\frac{1267}{5732}\right) e(53855732)e\left(\frac{5385}{5732}\right) e(4952866)e\left(\frac{495}{2866}\right) e(7581433)e\left(\frac{758}{1433}\right) e(12195732)e\left(\frac{1219}{5732}\right) e(42775732)e\left(\frac{4277}{5732}\right)
χ100315(917,)\chi_{100315}(917,\cdot) 1-1 11 e(56775732)e\left(\frac{5677}{5732}\right) e(27715732)e\left(\frac{2771}{5732}\right) e(28112866)e\left(\frac{2811}{2866}\right) e(6791433)e\left(\frac{679}{1433}\right) e(19575732)e\left(\frac{1957}{5732}\right) e(55675732)e\left(\frac{5567}{5732}\right) e(27712866)e\left(\frac{2771}{2866}\right) e(13021433)e\left(\frac{1302}{1433}\right) e(26615732)e\left(\frac{2661}{5732}\right) e(27115732)e\left(\frac{2711}{5732}\right)
χ100315(958,)\chi_{100315}(958,\cdot) 1-1 11 e(2795732)e\left(\frac{279}{5732}\right) e(38695732)e\left(\frac{3869}{5732}\right) e(2792866)e\left(\frac{279}{2866}\right) e(10371433)e\left(\frac{1037}{1433}\right) e(45595732)e\left(\frac{4559}{5732}\right) e(8375732)e\left(\frac{837}{5732}\right) e(10032866)e\left(\frac{1003}{2866}\right) e(13681433)e\left(\frac{1368}{1433}\right) e(44275732)e\left(\frac{4427}{5732}\right) e(20895732)e\left(\frac{2089}{5732}\right)