Properties

Label 100315.16
Modulus $100315$
Conductor $20063$
Order $1433$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(2866))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2572]))
 
pari: [g,chi] = znchar(Mod(16,100315))
 

Basic properties

Modulus: \(100315\)
Conductor: \(20063\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1433\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20063}(16,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.m

\(\chi_{100315}(16,\cdot)\) \(\chi_{100315}(146,\cdot)\) \(\chi_{100315}(211,\cdot)\) \(\chi_{100315}(256,\cdot)\) \(\chi_{100315}(281,\cdot)\) \(\chi_{100315}(376,\cdot)\) \(\chi_{100315}(446,\cdot)\) \(\chi_{100315}(696,\cdot)\) \(\chi_{100315}(726,\cdot)\) \(\chi_{100315}(796,\cdot)\) \(\chi_{100315}(891,\cdot)\) \(\chi_{100315}(941,\cdot)\) \(\chi_{100315}(971,\cdot)\) \(\chi_{100315}(981,\cdot)\) \(\chi_{100315}(1096,\cdot)\) \(\chi_{100315}(1201,\cdot)\) \(\chi_{100315}(1226,\cdot)\) \(\chi_{100315}(1301,\cdot)\) \(\chi_{100315}(1311,\cdot)\) \(\chi_{100315}(1461,\cdot)\) \(\chi_{100315}(1506,\cdot)\) \(\chi_{100315}(1751,\cdot)\) \(\chi_{100315}(1801,\cdot)\) \(\chi_{100315}(1826,\cdot)\) \(\chi_{100315}(1916,\cdot)\) \(\chi_{100315}(1981,\cdot)\) \(\chi_{100315}(2086,\cdot)\) \(\chi_{100315}(2126,\cdot)\) \(\chi_{100315}(2166,\cdot)\) \(\chi_{100315}(2181,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1433})$
Fixed field: Number field defined by a degree 1433 polynomial (not computed)

Values on generators

\((40127,40131)\) → \((1,e\left(\frac{1286}{1433}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 100315 }(16, a) \) \(1\)\(1\)\(e\left(\frac{399}{1433}\right)\)\(e\left(\frac{1080}{1433}\right)\)\(e\left(\frac{798}{1433}\right)\)\(e\left(\frac{46}{1433}\right)\)\(e\left(\frac{680}{1433}\right)\)\(e\left(\frac{1197}{1433}\right)\)\(e\left(\frac{727}{1433}\right)\)\(e\left(\frac{753}{1433}\right)\)\(e\left(\frac{445}{1433}\right)\)\(e\left(\frac{1385}{1433}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 100315 }(16,a) \;\) at \(\;a = \) e.g. 2