Properties

Label 1001.626
Modulus $1001$
Conductor $1001$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1001, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([2,6,1]))
 
Copy content pari:[g,chi] = znchar(Mod(626,1001))
 

Basic properties

Modulus: \(1001\)
Conductor: \(1001\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1001.ca

\(\chi_{1001}(626,\cdot)\) \(\chi_{1001}(670,\cdot)\) \(\chi_{1001}(747,\cdot)\) \(\chi_{1001}(934,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((430,365,925)\) → \((e\left(\frac{1}{6}\right),-1,e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(12\)\(15\)
\( \chi_{ 1001 }(626, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)\(1\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1001 }(626,a) \;\) at \(\;a = \) e.g. 2