sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1001, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1,1]))
pari:[g,chi] = znchar(Mod(1000,1001))
sage:kronecker_character(1001)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{1001}{\bullet}\right)\)
Modulus: | \(1001\) | |
Conductor: | \(1001\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | yes |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1001}(1000,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((430,365,925)\) → \((-1,-1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(15\) |
\( \chi_{ 1001 }(1000, a) \) |
\(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
sage:chi.jacobi_sum(n)