Learn more about

Refine search


Results (23 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
70.159...296.120.a.a $70$ $ 2^{152} \cdot 3217^{60}$ x8 - 4x7 + 3217 $A_8$ $1$ $-2$
70.310...496.120.a.a $70$ $ 2^{192} \cdot 51473^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823561 $A_8$ $1$ $-2$
70.801...704.120.a.a $70$ $ 2^{272} \cdot 7^{86} \cdot 11^{60} \cdot 191^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823585 $A_8$ $1$ $-2$
70.538...016.120.a.a $70$ $ 2^{204} \cdot 29^{60} \cdot 3917^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826816 $A_8$ $1$ $-2$
70.432...696.120.a.a $70$ $ 2^{272} \cdot 113^{60} \cdot 911^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823537 $A_8$ $1$ $-2$
70.435...896.120.a.a $70$ $ 2^{272} \cdot 102953^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823617 $A_8$ $1$ $-2$
70.343...456.120.a.a $70$ $ 2^{188} \cdot 11^{60} \cdot 74869^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823552 $A_8$ $1$ $-2$
70.137...224.120.a.a $70$ $ 2^{190} \cdot 23^{60} \cdot 35809^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823600 $A_8$ $1$ $-2$
70.588...104.120.a.a $70$ $ 2^{222} \cdot 823547^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823540 $A_8$ $1$ $-2$
70.590...104.120.a.a $70$ $ 2^{222} \cdot 43^{60} \cdot 107^{60} \cdot 179^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823572 $A_8$ $1$ $-2$
70.592...304.120.a.a $70$ $ 2^{222} \cdot 823643^{60}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823636 $A_8$ $1$ $-2$
70.298...616.120.a.a $70$ $ 2^{204} \cdot 3294173^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825280 $A_8$ $1$ $-2$
70.298...816.120.a.a $70$ $ 2^{204} \cdot 11^{60} \cdot 299471^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825792 $A_8$ $1$ $-2$
70.169...984.120.a.a $70$ $ 2^{194} \cdot 11^{60} \cdot 435593^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825220 $A_8$ $1$ $-2$
70.300...464.120.a.a $70$ $ 2^{216} \cdot 7^{86} \cdot 268913^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826000 $A_8$ $1$ $-2$
70.162...136.120.a.a $70$ $ 2^{216} \cdot 67^{60} \cdot 193^{60} \cdot 1019^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825232 $A_8$ $1$ $-2$
70.162...736.120.a.a $70$ $ 2^{216} \cdot 701^{60} \cdot 18797^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825360 $A_8$ $1$ $-2$
70.162...936.120.a.a $70$ $ 2^{216} \cdot 11^{60} \cdot 151^{60} \cdot 7933^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825616 $A_8$ $1$ $-2$
70.162...336.120.a.a $70$ $ 2^{216} \cdot 23^{60} \cdot 572903^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826512 $A_8$ $1$ $-2$
70.951...016.120.a.a $70$ $ 2^{194} \cdot 7^{86} \cdot 1075649^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825412 $A_8$ $1$ $-2$
70.514...984.120.a.a $70$ $ 2^{194} \cdot 52706761^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825252 $A_8$ $1$ $-2$
70.514...984.120.a.a $70$ $ 2^{194} \cdot 23^{60} \cdot 43^{60} \cdot 137^{60} \cdot 389^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825316 $A_8$ $1$ $-2$
70.515...784.120.a.a $70$ $ 2^{194} \cdot 29^{60} \cdot 37^{60} \cdot 49121^{60}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825540 $A_8$ $1$ $-2$