# Properties

 Label 70.300...464.120.a.a Dimension $70$ Group $A_8$ Conductor $3.003\times 10^{463}$ Root number $1$ Indicator $1$

# Related objects

## Basic invariants

 Dimension: $70$ Group: $A_8$ Conductor: $$300\!\cdots\!464$$$$\medspace = 2^{216} \cdot 7^{86} \cdot 268913^{60}$$ Frobenius-Schur indicator: $1$ Root number: $1$ Artin stem field: Galois closure of 8.0.36574214064047828349270556528863627894423814144.1 Galois orbit size: $1$ Smallest permutation container: 120 Parity: even Determinant: 1.1.1t1.a.a Projective image: $A_8$ Projective stem field: Galois closure of 8.0.36574214064047828349270556528863627894423814144.1

## Defining polynomial

 $f(x)$ $=$ $$x^{8} - 112x^{6} - 896x^{5} - 3360x^{4} - 7168x^{3} - 8960x^{2} - 6144x + 210826000$$ x^8 - 112*x^6 - 896*x^5 - 3360*x^4 - 7168*x^3 - 8960*x^2 - 6144*x + 210826000 .

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $$x^{3} + 3x + 81$$

Roots:
 $r_{ 1 }$ $=$ $$29 a^{2} + 75 a + 67 + \left(5 a^{2} + 15 a + 15\right)\cdot 83 + \left(19 a^{2} + 56 a + 63\right)\cdot 83^{2} + \left(32 a^{2} + 77 a + 44\right)\cdot 83^{3} + \left(57 a^{2} + 48 a + 71\right)\cdot 83^{4} + \left(64 a^{2} + 78 a + 23\right)\cdot 83^{5} + \left(4 a^{2} + 79 a + 12\right)\cdot 83^{6} + \left(74 a^{2} + 2 a + 50\right)\cdot 83^{7} + \left(23 a^{2} + 46 a + 26\right)\cdot 83^{8} + \left(72 a^{2} + 30 a + 49\right)\cdot 83^{9} +O(83^{10})$$ 29*a^2 + 75*a + 67 + (5*a^2 + 15*a + 15)*83 + (19*a^2 + 56*a + 63)*83^2 + (32*a^2 + 77*a + 44)*83^3 + (57*a^2 + 48*a + 71)*83^4 + (64*a^2 + 78*a + 23)*83^5 + (4*a^2 + 79*a + 12)*83^6 + (74*a^2 + 2*a + 50)*83^7 + (23*a^2 + 46*a + 26)*83^8 + (72*a^2 + 30*a + 49)*83^9+O(83^10) $r_{ 2 }$ $=$ $$38 a^{2} + 81 a + 57 + \left(34 a^{2} + 16 a + 40\right)\cdot 83 + \left(33 a^{2} + 14 a + 12\right)\cdot 83^{2} + \left(12 a^{2} + 37 a + 10\right)\cdot 83^{3} + \left(42 a^{2} + 78 a + 49\right)\cdot 83^{4} + \left(34 a^{2} + 21 a + 82\right)\cdot 83^{5} + \left(55 a^{2} + 74 a + 2\right)\cdot 83^{6} + \left(66 a^{2} + 28 a + 52\right)\cdot 83^{7} + \left(56 a^{2} + 27 a + 17\right)\cdot 83^{8} + \left(80 a^{2} + a + 66\right)\cdot 83^{9} +O(83^{10})$$ 38*a^2 + 81*a + 57 + (34*a^2 + 16*a + 40)*83 + (33*a^2 + 14*a + 12)*83^2 + (12*a^2 + 37*a + 10)*83^3 + (42*a^2 + 78*a + 49)*83^4 + (34*a^2 + 21*a + 82)*83^5 + (55*a^2 + 74*a + 2)*83^6 + (66*a^2 + 28*a + 52)*83^7 + (56*a^2 + 27*a + 17)*83^8 + (80*a^2 + a + 66)*83^9+O(83^10) $r_{ 3 }$ $=$ $$72 a^{2} + 27 a + 42 + \left(8 a^{2} + 25 a + 72\right)\cdot 83 + \left(56 a^{2} + 29 a + 57\right)\cdot 83^{2} + \left(63 a^{2} + 8 a + 29\right)\cdot 83^{3} + \left(35 a + 49\right)\cdot 83^{4} + \left(76 a^{2} + 21 a + 82\right)\cdot 83^{5} + \left(70 a^{2} + 44 a + 33\right)\cdot 83^{6} + \left(16 a^{2} + 26 a + 35\right)\cdot 83^{7} + \left(40 a^{2} + 22 a + 67\right)\cdot 83^{8} + \left(49 a^{2} + 80 a + 3\right)\cdot 83^{9} +O(83^{10})$$ 72*a^2 + 27*a + 42 + (8*a^2 + 25*a + 72)*83 + (56*a^2 + 29*a + 57)*83^2 + (63*a^2 + 8*a + 29)*83^3 + (35*a + 49)*83^4 + (76*a^2 + 21*a + 82)*83^5 + (70*a^2 + 44*a + 33)*83^6 + (16*a^2 + 26*a + 35)*83^7 + (40*a^2 + 22*a + 67)*83^8 + (49*a^2 + 80*a + 3)*83^9+O(83^10) $r_{ 4 }$ $=$ $$56 a^{2} + 58 a + 10 + \left(39 a^{2} + 40 a + 51\right)\cdot 83 + \left(76 a^{2} + 39 a + 15\right)\cdot 83^{2} + \left(6 a^{2} + 37 a + 82\right)\cdot 83^{3} + \left(40 a^{2} + 52 a + 44\right)\cdot 83^{4} + \left(55 a^{2} + 39 a + 41\right)\cdot 83^{5} + \left(39 a^{2} + 47 a + 54\right)\cdot 83^{6} + \left(82 a^{2} + 27 a\right)\cdot 83^{7} + \left(68 a^{2} + 33 a + 42\right)\cdot 83^{8} + \left(35 a^{2} + a + 59\right)\cdot 83^{9} +O(83^{10})$$ 56*a^2 + 58*a + 10 + (39*a^2 + 40*a + 51)*83 + (76*a^2 + 39*a + 15)*83^2 + (6*a^2 + 37*a + 82)*83^3 + (40*a^2 + 52*a + 44)*83^4 + (55*a^2 + 39*a + 41)*83^5 + (39*a^2 + 47*a + 54)*83^6 + (82*a^2 + 27*a)*83^7 + (68*a^2 + 33*a + 42)*83^8 + (35*a^2 + a + 59)*83^9+O(83^10) $r_{ 5 }$ $=$ $$71 + 71\cdot 83 + 63\cdot 83^{2} + 40\cdot 83^{3} + 12\cdot 83^{4} + 52\cdot 83^{5} + 77\cdot 83^{6} + 53\cdot 83^{7} + 14\cdot 83^{8} + 19\cdot 83^{9} +O(83^{10})$$ 71 + 71*83 + 63*83^2 + 40*83^3 + 12*83^4 + 52*83^5 + 77*83^6 + 53*83^7 + 14*83^8 + 19*83^9+O(83^10) $r_{ 6 }$ $=$ $$3 a^{2} + 58 a + 15 + \left(31 a^{2} + 75 a + 67\right)\cdot 83 + \left(a^{2} + 29 a + 27\right)\cdot 83^{2} + \left(10 a^{2} + 29 a\right)\cdot 83^{3} + \left(34 a^{2} + 74 a + 25\right)\cdot 83^{4} + \left(39 a^{2} + 37 a + 56\right)\cdot 83^{5} + \left(53 a^{2} + a + 26\right)\cdot 83^{6} + \left(40 a^{2} + 42 a + 66\right)\cdot 83^{7} + \left(11 a^{2} + 75 a + 1\right)\cdot 83^{8} + \left(19 a^{2} + 33 a + 26\right)\cdot 83^{9} +O(83^{10})$$ 3*a^2 + 58*a + 15 + (31*a^2 + 75*a + 67)*83 + (a^2 + 29*a + 27)*83^2 + (10*a^2 + 29*a)*83^3 + (34*a^2 + 74*a + 25)*83^4 + (39*a^2 + 37*a + 56)*83^5 + (53*a^2 + a + 26)*83^6 + (40*a^2 + 42*a + 66)*83^7 + (11*a^2 + 75*a + 1)*83^8 + (19*a^2 + 33*a + 26)*83^9+O(83^10) $r_{ 7 }$ $=$ $$42 + 80\cdot 83 + 23\cdot 83^{2} + 62\cdot 83^{3} + 56\cdot 83^{4} + 57\cdot 83^{5} + 71\cdot 83^{6} + 68\cdot 83^{7} + 4\cdot 83^{8} + 54\cdot 83^{9} +O(83^{10})$$ 42 + 80*83 + 23*83^2 + 62*83^3 + 56*83^4 + 57*83^5 + 71*83^6 + 68*83^7 + 4*83^8 + 54*83^9+O(83^10) $r_{ 8 }$ $=$ $$51 a^{2} + 33 a + 28 + \left(46 a^{2} + 74 a + 15\right)\cdot 83 + \left(62 a^{2} + 79 a + 67\right)\cdot 83^{2} + \left(40 a^{2} + 58 a + 61\right)\cdot 83^{3} + \left(74 a^{2} + 42 a + 22\right)\cdot 83^{4} + \left(61 a^{2} + 49 a + 18\right)\cdot 83^{5} + \left(24 a^{2} + a + 52\right)\cdot 83^{6} + \left(51 a^{2} + 38 a + 4\right)\cdot 83^{7} + \left(47 a^{2} + 44 a + 74\right)\cdot 83^{8} + \left(74 a^{2} + 18 a + 53\right)\cdot 83^{9} +O(83^{10})$$ 51*a^2 + 33*a + 28 + (46*a^2 + 74*a + 15)*83 + (62*a^2 + 79*a + 67)*83^2 + (40*a^2 + 58*a + 61)*83^3 + (74*a^2 + 42*a + 22)*83^4 + (61*a^2 + 49*a + 18)*83^5 + (24*a^2 + a + 52)*83^6 + (51*a^2 + 38*a + 4)*83^7 + (47*a^2 + 44*a + 74)*83^8 + (74*a^2 + 18*a + 53)*83^9+O(83^10)

## Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

 Cycle notation $(1,2)(3,4,5,6,7,8)$ $(1,2,3)$

## Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 8 }$ Character value $1$ $1$ $()$ $70$ $105$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-2$ $210$ $2$ $(1,2)(3,4)$ $2$ $112$ $3$ $(1,2,3)$ $-5$ $1120$ $3$ $(1,2,3)(4,5,6)$ $1$ $1260$ $4$ $(1,2,3,4)(5,6,7,8)$ $-2$ $2520$ $4$ $(1,2,3,4)(5,6)$ $0$ $1344$ $5$ $(1,2,3,4,5)$ $0$ $1680$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$ $3360$ $6$ $(1,2,3,4,5,6)(7,8)$ $1$ $2880$ $7$ $(1,2,3,4,5,6,7)$ $0$ $2880$ $7$ $(1,3,4,5,6,7,2)$ $0$ $1344$ $15$ $(1,2,3,4,5)(6,7,8)$ $0$ $1344$ $15$ $(1,3,4,5,2)(6,7,8)$ $0$

The blue line marks the conjugacy class containing complex conjugation.