⌂
→
Artin representations
→
Search results
Citation
·
Feedback
·
Hide Menu
Artin representation search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Artin representations labels
Refine search
Dimension
Conductor
Group
Root number
Parity
even
odd
Smallest permutation
Ramified
include
exactly
subset
Unramified primes
Ramified prime count
Frobenius-Schur
Projective image
Projective image type
Dn
A4
S4
A5
Sort order
Select
Search again
Random representation
▲ dimension
conductor
group
ramified prime count
projective image
columns to display
✓ label
✓ dimension
✓ conductor
ramified prime count
✓ Artin stem field
✓ image
projective image
container
✓ indicator
✓ trace of complex conj.
show all
Results (1-50 of 85912 matches)
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Galois conjugate representations are grouped into single lines.
Label
Dimension
Conductor
Ramified prime count
Artin stem field
$G$
Projective image
Container
Ind
$\chi(c)$
1.10001.2t1.a.a
$1$
$ 73 \cdot 137 $
$2$
\(\Q(\sqrt{10001}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10001.4t1.a.a
1.10001.4t1.a.b
$1$
$ 73 \cdot 137 $
$2$
4.4.1000300030001.1
$C_4$
$C_1$
$C_4$
$0$
$1$
1.10003.2t1.a.a
$1$
$ 7 \cdot 1429 $
$2$
\(\Q(\sqrt{-10003}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10003.3t1.a.a
1.10003.3t1.a.b
$1$
$ 7 \cdot 1429 $
$2$
3.3.100060009.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10003.3t1.b.a
1.10003.3t1.b.b
$1$
$ 7 \cdot 1429 $
$2$
3.3.100060009.2
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10004.2t1.a.a
$1$
$ 2^{2} \cdot 41 \cdot 61 $
$3$
\(\Q(\sqrt{-2501}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10005.2t1.a.a
$1$
$ 3 \cdot 5 \cdot 23 \cdot 29 $
$4$
\(\Q(\sqrt{10005}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10005.4t1.a.a
1.10005.4t1.a.b
$1$
$ 3 \cdot 5 \cdot 23 \cdot 29 $
$4$
4.0.500500125.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.10007.2t1.a.a
$1$
$ 10007 $
$1$
\(\Q(\sqrt{-10007}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10009.3t1.a.a
1.10009.3t1.a.b
$1$
$ 10009 $
$1$
3.3.100180081.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10011.2t1.a.a
$1$
$ 3 \cdot 47 \cdot 71 $
$3$
\(\Q(\sqrt{-10011}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10012.2t1.a.a
$1$
$ 2^{2} \cdot 2503 $
$2$
\(\Q(\sqrt{2503}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10013.2t1.a.a
$1$
$ 17 \cdot 19 \cdot 31 $
$3$
\(\Q(\sqrt{10013}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10015.2t1.a.a
$1$
$ 5 \cdot 2003 $
$2$
\(\Q(\sqrt{-10015}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10019.2t1.a.a
$1$
$ 43 \cdot 233 $
$2$
\(\Q(\sqrt{-10019}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10020.2t1.a.a
$1$
$ 2^{2} \cdot 3 \cdot 5 \cdot 167 $
$4$
\(\Q(\sqrt{-2505}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10023.2t1.a.a
$1$
$ 3 \cdot 13 \cdot 257 $
$3$
\(\Q(\sqrt{-10023}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10024.2t1.a.a
$1$
$ 2^{3} \cdot 7 \cdot 179 $
$3$
\(\Q(\sqrt{2506}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10024.2t1.b.a
$1$
$ 2^{3} \cdot 7 \cdot 179 $
$3$
\(\Q(\sqrt{-2506}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10027.2t1.a.a
$1$
$ 37 \cdot 271 $
$2$
\(\Q(\sqrt{-10027}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10027.3t1.a.a
1.10027.3t1.a.b
$1$
$ 37 \cdot 271 $
$2$
3.3.100540729.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10027.3t1.b.a
1.10027.3t1.b.b
$1$
$ 37 \cdot 271 $
$2$
3.3.100540729.2
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10028.2t1.a.a
$1$
$ 2^{2} \cdot 23 \cdot 109 $
$3$
\(\Q(\sqrt{2507}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10029.2t1.a.a
$1$
$ 3 \cdot 3343 $
$2$
\(\Q(\sqrt{10029}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10031.2t1.a.a
$1$
$ 7 \cdot 1433 $
$2$
\(\Q(\sqrt{-10031}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10033.3t1.a.a
1.10033.3t1.a.b
$1$
$ 79 \cdot 127 $
$2$
3.3.100661089.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10033.3t1.b.a
1.10033.3t1.b.b
$1$
$ 79 \cdot 127 $
$2$
3.3.100661089.2
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10036.2t1.a.a
$1$
$ 2^{2} \cdot 13 \cdot 193 $
$3$
\(\Q(\sqrt{-2509}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10037.2t1.a.a
$1$
$ 10037 $
$1$
\(\Q(\sqrt{10037}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10039.2t1.a.a
$1$
$ 10039 $
$1$
\(\Q(\sqrt{-10039}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10039.3t1.a.a
1.10039.3t1.a.b
$1$
$ 10039 $
$1$
3.3.100781521.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10040.2t1.a.a
$1$
$ 2^{3} \cdot 5 \cdot 251 $
$3$
\(\Q(\sqrt{2510}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10040.2t1.b.a
$1$
$ 2^{3} \cdot 5 \cdot 251 $
$3$
\(\Q(\sqrt{-2510}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10040.4t1.a.a
1.10040.4t1.a.b
$1$
$ 2^{3} \cdot 5 \cdot 251 $
$3$
4.0.504008000.5
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.10041.2t1.a.a
$1$
$ 3 \cdot 3347 $
$2$
\(\Q(\sqrt{10041}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10047.2t1.a.a
$1$
$ 3 \cdot 17 \cdot 197 $
$3$
\(\Q(\sqrt{-10047}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10052.2t1.a.a
$1$
$ 2^{2} \cdot 7 \cdot 359 $
$3$
\(\Q(\sqrt{-2513}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10053.3t1.a.a
1.10053.3t1.a.b
$1$
$ 3^{2} \cdot 1117 $
$2$
3.3.101062809.1
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10053.3t1.b.a
1.10053.3t1.b.b
$1$
$ 3^{2} \cdot 1117 $
$2$
3.3.101062809.2
$C_3$
$C_1$
$C_3$
$0$
$1$
1.10053.6t1.a.a
1.10053.6t1.a.b
$1$
$ 3^{2} \cdot 1117 $
$2$
6.6.9143859769893.1
$C_6$
$C_1$
$C_6$
$0$
$1$
1.10055.2t1.a.a
$1$
$ 5 \cdot 2011 $
$2$
\(\Q(\sqrt{-10055}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10056.2t1.a.a
$1$
$ 2^{3} \cdot 3 \cdot 419 $
$3$
\(\Q(\sqrt{2514}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10056.2t1.b.a
$1$
$ 2^{3} \cdot 3 \cdot 419 $
$3$
\(\Q(\sqrt{-2514}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10057.2t1.a.a
$1$
$ 89 \cdot 113 $
$2$
\(\Q(\sqrt{10057}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10059.2t1.a.a
$1$
$ 3 \cdot 7 \cdot 479 $
$3$
\(\Q(\sqrt{-10059}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10060.2t1.a.a
$1$
$ 2^{2} \cdot 5 \cdot 503 $
$3$
\(\Q(\sqrt{2515}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10061.2t1.a.a
$1$
$ 10061 $
$1$
\(\Q(\sqrt{10061}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10063.2t1.a.a
$1$
$ 29 \cdot 347 $
$2$
\(\Q(\sqrt{-10063}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10064.4t1.a.a
1.10064.4t1.a.b
$1$
$ 2^{4} \cdot 17 \cdot 37 $
$3$
4.0.810272768.2
$C_4$
$C_1$
$C_4$
$0$
$-1$
1.10067.2t1.a.a
$1$
$ 10067 $
$1$
\(\Q(\sqrt{-10067}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV