Learn more

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
1.10001.2t1.a.a $1$ $ 73 \cdot 137 $ \(\Q(\sqrt{10001}) \) $C_2$ $1$ $1$
1.10001.4t1.a.a 1.10001.4t1.a.b $1$ $ 73 \cdot 137 $ 4.4.1000300030001.1 $C_4$ $0$ $1$
1.10003.2t1.a.a $1$ $ 7 \cdot 1429 $ \(\Q(\sqrt{-10003}) \) $C_2$ $1$ $-1$
1.10003.3t1.b.a 1.10003.3t1.b.b $1$ $ 7 \cdot 1429 $ 3.3.100060009.2 $C_3$ $0$ $1$
1.10003.3t1.a.a 1.10003.3t1.a.b $1$ $ 7 \cdot 1429 $ 3.3.100060009.1 $C_3$ $0$ $1$
1.10004.2t1.a.a $1$ $ 2^{2} \cdot 41 \cdot 61 $ \(\Q(\sqrt{-2501}) \) $C_2$ $1$ $-1$
1.10005.2t1.a.a $1$ $ 3 \cdot 5 \cdot 23 \cdot 29 $ \(\Q(\sqrt{10005}) \) $C_2$ $1$ $1$
1.10005.4t1.a.a 1.10005.4t1.a.b $1$ $ 3 \cdot 5 \cdot 23 \cdot 29 $ 4.0.500500125.2 $C_4$ $0$ $-1$
1.10007.2t1.a.a $1$ $ 10007 $ \(\Q(\sqrt{-10007}) \) $C_2$ $1$ $-1$
1.10009.3t1.a.a 1.10009.3t1.a.b $1$ $ 10009 $ 3.3.100180081.1 $C_3$ $0$ $1$
1.10011.2t1.a.a $1$ $ 3 \cdot 47 \cdot 71 $ \(\Q(\sqrt{-10011}) \) $C_2$ $1$ $-1$
1.10012.2t1.a.a $1$ $ 2^{2} \cdot 2503 $ \(\Q(\sqrt{2503}) \) $C_2$ $1$ $1$
1.10013.2t1.a.a $1$ $ 17 \cdot 19 \cdot 31 $ \(\Q(\sqrt{10013}) \) $C_2$ $1$ $1$
1.10015.2t1.a.a $1$ $ 5 \cdot 2003 $ \(\Q(\sqrt{-10015}) \) $C_2$ $1$ $-1$
1.10019.2t1.a.a $1$ $ 43 \cdot 233 $ \(\Q(\sqrt{-10019}) \) $C_2$ $1$ $-1$
1.10020.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 5 \cdot 167 $ \(\Q(\sqrt{-2505}) \) $C_2$ $1$ $-1$
1.10023.2t1.a.a $1$ $ 3 \cdot 13 \cdot 257 $ \(\Q(\sqrt{-10023}) \) $C_2$ $1$ $-1$
1.10024.2t1.b.a $1$ $ 2^{3} \cdot 7 \cdot 179 $ \(\Q(\sqrt{-2506}) \) $C_2$ $1$ $-1$
1.10024.2t1.a.a $1$ $ 2^{3} \cdot 7 \cdot 179 $ \(\Q(\sqrt{2506}) \) $C_2$ $1$ $1$
1.10027.2t1.a.a $1$ $ 37 \cdot 271 $ \(\Q(\sqrt{-10027}) \) $C_2$ $1$ $-1$
1.10027.3t1.b.a 1.10027.3t1.b.b $1$ $ 37 \cdot 271 $ 3.3.100540729.2 $C_3$ $0$ $1$
1.10027.3t1.a.a 1.10027.3t1.a.b $1$ $ 37 \cdot 271 $ 3.3.100540729.1 $C_3$ $0$ $1$
1.10028.2t1.a.a $1$ $ 2^{2} \cdot 23 \cdot 109 $ \(\Q(\sqrt{2507}) \) $C_2$ $1$ $1$
1.10029.2t1.a.a $1$ $ 3 \cdot 3343 $ \(\Q(\sqrt{10029}) \) $C_2$ $1$ $1$
1.10031.2t1.a.a $1$ $ 7 \cdot 1433 $ \(\Q(\sqrt{-10031}) \) $C_2$ $1$ $-1$
1.10033.3t1.a.a 1.10033.3t1.a.b $1$ $ 79 \cdot 127 $ 3.3.100661089.1 $C_3$ $0$ $1$
1.10033.3t1.b.a 1.10033.3t1.b.b $1$ $ 79 \cdot 127 $ 3.3.100661089.2 $C_3$ $0$ $1$
1.10036.2t1.a.a $1$ $ 2^{2} \cdot 13 \cdot 193 $ \(\Q(\sqrt{-2509}) \) $C_2$ $1$ $-1$
1.10037.2t1.a.a $1$ $ 10037 $ \(\Q(\sqrt{10037}) \) $C_2$ $1$ $1$
1.10039.2t1.a.a $1$ $ 10039 $ \(\Q(\sqrt{-10039}) \) $C_2$ $1$ $-1$
1.10039.3t1.a.a 1.10039.3t1.a.b $1$ $ 10039 $ 3.3.100781521.1 $C_3$ $0$ $1$
1.10040.2t1.a.a $1$ $ 2^{3} \cdot 5 \cdot 251 $ \(\Q(\sqrt{2510}) \) $C_2$ $1$ $1$
1.10040.2t1.b.a $1$ $ 2^{3} \cdot 5 \cdot 251 $ \(\Q(\sqrt{-2510}) \) $C_2$ $1$ $-1$
1.10040.4t1.a.a 1.10040.4t1.a.b $1$ $ 2^{3} \cdot 5 \cdot 251 $ 4.0.504008000.5 $C_4$ $0$ $-1$
1.10041.2t1.a.a $1$ $ 3 \cdot 3347 $ \(\Q(\sqrt{10041}) \) $C_2$ $1$ $1$
1.10047.2t1.a.a $1$ $ 3 \cdot 17 \cdot 197 $ \(\Q(\sqrt{-10047}) \) $C_2$ $1$ $-1$
1.10052.2t1.a.a $1$ $ 2^{2} \cdot 7 \cdot 359 $ \(\Q(\sqrt{-2513}) \) $C_2$ $1$ $-1$
1.10053.3t1.b.a 1.10053.3t1.b.b $1$ $ 3^{2} \cdot 1117 $ 3.3.101062809.2 $C_3$ $0$ $1$
1.10053.3t1.a.a 1.10053.3t1.a.b $1$ $ 3^{2} \cdot 1117 $ 3.3.101062809.1 $C_3$ $0$ $1$
1.10053.6t1.a.a 1.10053.6t1.a.b $1$ $ 3^{2} \cdot 1117 $ 6.6.9143859769893.1 $C_6$ $0$ $1$
1.10055.2t1.a.a $1$ $ 5 \cdot 2011 $ \(\Q(\sqrt{-10055}) \) $C_2$ $1$ $-1$
1.10056.2t1.b.a $1$ $ 2^{3} \cdot 3 \cdot 419 $ \(\Q(\sqrt{-2514}) \) $C_2$ $1$ $-1$
1.10056.2t1.a.a $1$ $ 2^{3} \cdot 3 \cdot 419 $ \(\Q(\sqrt{2514}) \) $C_2$ $1$ $1$
1.10057.2t1.a.a $1$ $ 89 \cdot 113 $ \(\Q(\sqrt{10057}) \) $C_2$ $1$ $1$
1.10059.2t1.a.a $1$ $ 3 \cdot 7 \cdot 479 $ \(\Q(\sqrt{-10059}) \) $C_2$ $1$ $-1$
1.10060.2t1.a.a $1$ $ 2^{2} \cdot 5 \cdot 503 $ \(\Q(\sqrt{2515}) \) $C_2$ $1$ $1$
1.10061.2t1.a.a $1$ $ 10061 $ \(\Q(\sqrt{10061}) \) $C_2$ $1$ $1$
1.10063.2t1.a.a $1$ $ 29 \cdot 347 $ \(\Q(\sqrt{-10063}) \) $C_2$ $1$ $-1$
1.10064.4t1.a.a 1.10064.4t1.a.b $1$ $ 2^{4} \cdot 17 \cdot 37 $ 4.0.810272768.2 $C_4$ $0$ $-1$
1.10067.2t1.a.a $1$ $ 10067 $ \(\Q(\sqrt{-10067}) \) $C_2$ $1$ $-1$
Next