Properties

Label 8.839...656.24t333.f.a
Dimension $8$
Group $C_2^3:S_4$
Conductor $8.395\times 10^{15}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $8$
Group: $C_2^3:S_4$
Conductor: \(8395180207046656\)\(\medspace = 2^{16} \cdot 71^{6} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.4.32793672683776.1
Galois orbit size: $1$
Smallest permutation container: 24T333
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2:S_4$
Projective stem field: Galois closure of 8.0.8395180207046656.8

Defining polynomial

$f(x)$$=$ \( x^{8} + 3x^{6} - 112x^{4} + 299x^{2} + 25 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{3} + 2x + 11 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a^{2} + a + 2 + \left(2 a^{2} + a + 9\right)\cdot 13 + \left(11 a^{2} + 10 a + 12\right)\cdot 13^{2} + \left(8 a + 2\right)\cdot 13^{3} + \left(11 a^{2} + 11 a + 1\right)\cdot 13^{4} + \left(3 a^{2} + 2 a + 5\right)\cdot 13^{5} + \left(3 a^{2} + 6 a + 12\right)\cdot 13^{6} + \left(12 a^{2} + 2 a + 3\right)\cdot 13^{7} + \left(10 a^{2} + 8 a + 8\right)\cdot 13^{8} + \left(11 a^{2} + 6 a + 8\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 + 13 + 12\cdot 13^{2} + 3\cdot 13^{3} + 8\cdot 13^{4} + 10\cdot 13^{5} + 9\cdot 13^{7} + 6\cdot 13^{8} + 8\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 a + 7 + \left(8 a + 7\right)\cdot 13 + \left(a^{2} + 12 a + 3\right)\cdot 13^{2} + \left(5 a^{2} + 10 a + 9\right)\cdot 13^{3} + \left(5 a^{2} + 7\right)\cdot 13^{4} + \left(6 a^{2} + 12 a + 8\right)\cdot 13^{5} + \left(10 a^{2} + 8 a + 1\right)\cdot 13^{6} + \left(11 a^{2} + 6 a + 2\right)\cdot 13^{7} + \left(a^{2} + 9 a\right)\cdot 13^{8} + \left(6 a^{2} + 11 a + 11\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 a^{2} + 3 a + 3 + \left(2 a^{2} + 5 a + 11\right)\cdot 13 + \left(10 a^{2} + 10 a + 2\right)\cdot 13^{2} + \left(8 a^{2} + 10 a + 1\right)\cdot 13^{3} + \left(5 a^{2} + 10 a + 8\right)\cdot 13^{4} + \left(10 a^{2} + 3 a + 9\right)\cdot 13^{5} + \left(5 a^{2} + 10 a + 12\right)\cdot 13^{6} + \left(8 a + 12\right)\cdot 13^{7} + \left(9 a^{2} + 11 a\right)\cdot 13^{8} + \left(5 a^{2} + 7 a + 6\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a^{2} + 12 a + 11 + \left(10 a^{2} + 11 a + 3\right)\cdot 13 + \left(a^{2} + 2 a\right)\cdot 13^{2} + \left(12 a^{2} + 4 a + 10\right)\cdot 13^{3} + \left(a^{2} + a + 11\right)\cdot 13^{4} + \left(9 a^{2} + 10 a + 7\right)\cdot 13^{5} + \left(9 a^{2} + 6 a\right)\cdot 13^{6} + \left(10 a + 9\right)\cdot 13^{7} + \left(2 a^{2} + 4 a + 4\right)\cdot 13^{8} + \left(a^{2} + 6 a + 4\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 + 11\cdot 13 + 9\cdot 13^{3} + 4\cdot 13^{4} + 2\cdot 13^{5} + 12\cdot 13^{6} + 3\cdot 13^{7} + 6\cdot 13^{8} + 4\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 2 a + 6 + \left(4 a + 5\right)\cdot 13 + \left(12 a^{2} + 9\right)\cdot 13^{2} + \left(7 a^{2} + 2 a + 3\right)\cdot 13^{3} + \left(7 a^{2} + 12 a + 5\right)\cdot 13^{4} + \left(6 a^{2} + 4\right)\cdot 13^{5} + \left(2 a^{2} + 4 a + 11\right)\cdot 13^{6} + \left(a^{2} + 6 a + 10\right)\cdot 13^{7} + \left(11 a^{2} + 3 a + 12\right)\cdot 13^{8} + \left(6 a^{2} + a + 1\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 3 a^{2} + 10 a + 10 + \left(10 a^{2} + 7 a + 1\right)\cdot 13 + \left(2 a^{2} + 2 a + 10\right)\cdot 13^{2} + \left(4 a^{2} + 2 a + 11\right)\cdot 13^{3} + \left(7 a^{2} + 2 a + 4\right)\cdot 13^{4} + \left(2 a^{2} + 9 a + 3\right)\cdot 13^{5} + \left(7 a^{2} + 2 a\right)\cdot 13^{6} + \left(12 a^{2} + 4 a\right)\cdot 13^{7} + \left(3 a^{2} + a + 12\right)\cdot 13^{8} + \left(7 a^{2} + 5 a + 6\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(4,6)$
$(1,3,6,4)(2,8,5,7)$
$(2,4)(6,8)$
$(1,3,2,4)(5,7,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$8$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-8$
$6$$2$$(1,6)(2,5)(3,4)(7,8)$$0$
$6$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$6$$2$$(3,7)(4,8)$$0$
$12$$2$$(2,8)(4,6)$$0$
$12$$2$$(1,5)(2,6)(3,8)(4,7)$$0$
$32$$3$$(2,4,3)(6,8,7)$$-1$
$12$$4$$(1,2,5,6)(3,8,7,4)$$0$
$24$$4$$(1,3,6,4)(2,8,5,7)$$0$
$24$$4$$(1,7,6,4)(2,8,5,3)$$0$
$24$$4$$(1,5)(3,8,7,4)$$0$
$32$$6$$(1,5)(2,7,4,6,3,8)$$1$