Basic invariants
Dimension: | $8$ |
Group: | $C_2^3:S_4$ |
Conductor: | \(1579300663853056\)\(\medspace = 2^{20} \cdot 197^{4} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 8.4.10173546496.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 24T333 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2:S_4$ |
Projective stem field: | Galois closure of 8.0.98706291490816.7 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{8} - 8x^{6} - 20x^{4} + 4 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{3} + 4x + 17 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 2 a^{2} + 2 a + 2 + \left(12 a^{2} + a + 10\right)\cdot 19 + \left(6 a^{2} + 17 a + 1\right)\cdot 19^{2} + \left(7 a^{2} + 4 a + 16\right)\cdot 19^{3} + \left(8 a^{2} + 7 a\right)\cdot 19^{4} + \left(6 a^{2} + 6\right)\cdot 19^{5} + \left(5 a^{2} + 5 a + 1\right)\cdot 19^{6} + \left(3 a^{2} + 2 a + 7\right)\cdot 19^{7} + \left(5 a^{2} + 8 a + 5\right)\cdot 19^{8} + \left(a^{2} + 17 a + 1\right)\cdot 19^{9} +O(19^{10})\)
|
$r_{ 2 }$ | $=$ |
\( 7 a^{2} + 15 a + 9 + \left(17 a^{2} + a + 11\right)\cdot 19 + \left(4 a^{2} + 9\right)\cdot 19^{2} + \left(10 a^{2} + a + 17\right)\cdot 19^{3} + \left(8 a^{2} + 18 a + 13\right)\cdot 19^{4} + \left(10 a^{2} + 8 a + 16\right)\cdot 19^{5} + \left(11 a^{2} + 17\right)\cdot 19^{6} + \left(14 a^{2} + 13 a + 11\right)\cdot 19^{7} + \left(17 a^{2} + a + 13\right)\cdot 19^{8} + \left(12 a^{2} + 10 a\right)\cdot 19^{9} +O(19^{10})\)
|
$r_{ 3 }$ | $=$ |
\( 9 a^{2} + 17 a + 2 + \left(10 a^{2} + 2 a + 12\right)\cdot 19 + \left(11 a^{2} + 17 a + 2\right)\cdot 19^{2} + \left(17 a^{2} + 5 a + 6\right)\cdot 19^{3} + \left(16 a^{2} + 6 a + 3\right)\cdot 19^{4} + \left(16 a^{2} + 9 a + 18\right)\cdot 19^{5} + \left(16 a^{2} + 5 a\right)\cdot 19^{6} + \left(17 a^{2} + 15 a + 5\right)\cdot 19^{7} + \left(3 a^{2} + 9 a + 6\right)\cdot 19^{8} + \left(14 a^{2} + 8 a + 8\right)\cdot 19^{9} +O(19^{10})\)
|
$r_{ 4 }$ | $=$ |
\( 7 + 15\cdot 19 + 14\cdot 19^{2} + 13\cdot 19^{4} + 19^{5} + 16\cdot 19^{6} + 15\cdot 19^{7} + 16\cdot 19^{8} + 13\cdot 19^{9} +O(19^{10})\)
|
$r_{ 5 }$ | $=$ |
\( 17 a^{2} + 17 a + 17 + \left(6 a^{2} + 17 a + 8\right)\cdot 19 + \left(12 a^{2} + a + 17\right)\cdot 19^{2} + \left(11 a^{2} + 14 a + 2\right)\cdot 19^{3} + \left(10 a^{2} + 11 a + 18\right)\cdot 19^{4} + \left(12 a^{2} + 18 a + 12\right)\cdot 19^{5} + \left(13 a^{2} + 13 a + 17\right)\cdot 19^{6} + \left(15 a^{2} + 16 a + 11\right)\cdot 19^{7} + \left(13 a^{2} + 10 a + 13\right)\cdot 19^{8} + \left(17 a^{2} + a + 17\right)\cdot 19^{9} +O(19^{10})\)
|
$r_{ 6 }$ | $=$ |
\( 12 a^{2} + 4 a + 10 + \left(a^{2} + 17 a + 7\right)\cdot 19 + \left(14 a^{2} + 18 a + 9\right)\cdot 19^{2} + \left(8 a^{2} + 17 a + 1\right)\cdot 19^{3} + \left(10 a^{2} + 5\right)\cdot 19^{4} + \left(8 a^{2} + 10 a + 2\right)\cdot 19^{5} + \left(7 a^{2} + 18 a + 1\right)\cdot 19^{6} + \left(4 a^{2} + 5 a + 7\right)\cdot 19^{7} + \left(a^{2} + 17 a + 5\right)\cdot 19^{8} + \left(6 a^{2} + 8 a + 18\right)\cdot 19^{9} +O(19^{10})\)
|
$r_{ 7 }$ | $=$ |
\( 10 a^{2} + 2 a + 17 + \left(8 a^{2} + 16 a + 6\right)\cdot 19 + \left(7 a^{2} + a + 16\right)\cdot 19^{2} + \left(a^{2} + 13 a + 12\right)\cdot 19^{3} + \left(2 a^{2} + 12 a + 15\right)\cdot 19^{4} + \left(2 a^{2} + 9 a\right)\cdot 19^{5} + \left(2 a^{2} + 13 a + 18\right)\cdot 19^{6} + \left(a^{2} + 3 a + 13\right)\cdot 19^{7} + \left(15 a^{2} + 9 a + 12\right)\cdot 19^{8} + \left(4 a^{2} + 10 a + 10\right)\cdot 19^{9} +O(19^{10})\)
|
$r_{ 8 }$ | $=$ |
\( 12 + 3\cdot 19 + 4\cdot 19^{2} + 18\cdot 19^{3} + 5\cdot 19^{4} + 17\cdot 19^{5} + 2\cdot 19^{6} + 3\cdot 19^{7} + 2\cdot 19^{8} + 5\cdot 19^{9} +O(19^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $8$ | |
$1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $-8$ | |
$6$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ | |
$6$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ | $0$ | |
$6$ | $2$ | $(1,5)(4,8)$ | $0$ | ✓ |
$12$ | $2$ | $(1,2)(5,6)$ | $0$ | |
$12$ | $2$ | $(1,8)(2,6)(3,7)(4,5)$ | $0$ | |
$32$ | $3$ | $(1,4,6)(2,5,8)$ | $-1$ | |
$12$ | $4$ | $(1,4,5,8)(2,3,6,7)$ | $0$ | |
$24$ | $4$ | $(1,3,4,2)(5,7,8,6)$ | $0$ | |
$24$ | $4$ | $(1,3,8,2)(4,6,5,7)$ | $0$ | |
$24$ | $4$ | $(1,4,5,8)(3,7)$ | $0$ | |
$32$ | $6$ | $(1,2,4,5,6,8)(3,7)$ | $1$ |