Properties

Label 3.80656.6t8.a
Dimension $3$
Group $S_4$
Conductor $80656$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(80656\)\(\medspace = 2^{4} \cdot 71^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.20164.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Projective image: $S_4$
Projective field: Galois closure of 4.2.20164.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 120 + 107\cdot 337^{2} + 194\cdot 337^{3} + 323\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 274 + 270\cdot 337 + 106\cdot 337^{2} + 300\cdot 337^{3} + 323\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 287 + 292\cdot 337 + 223\cdot 337^{2} + 235\cdot 337^{3} + 193\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 331 + 109\cdot 337 + 236\cdot 337^{2} + 280\cdot 337^{3} + 169\cdot 337^{4} +O(337^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.