Basic invariants
| Dimension: | $3$ |
| Group: | $S_4$ |
| Conductor: | \(32353344\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 79^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 4.2.17064.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_4$ |
| Parity: | even |
| Determinant: | 1.1.1t1.a.a |
| Projective image: | $S_4$ |
| Projective stem field: | Galois closure of 4.2.17064.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} - 3x^{2} - 4x - 6 \)
|
The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 192 + 101\cdot 389 + 81\cdot 389^{2} + 102\cdot 389^{3} + 310\cdot 389^{4} +O(389^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 294 + 353\cdot 389 + 96\cdot 389^{2} + 97\cdot 389^{3} + 99\cdot 389^{4} +O(389^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 321 + 343\cdot 389 + 354\cdot 389^{2} + 125\cdot 389^{3} + 188\cdot 389^{4} +O(389^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 360 + 367\cdot 389 + 244\cdot 389^{2} + 63\cdot 389^{3} + 180\cdot 389^{4} +O(389^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $3$ | |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ | |
| $6$ | $2$ | $(1,2)$ | $-1$ | ✓ |
| $8$ | $3$ | $(1,2,3)$ | $0$ | |
| $6$ | $4$ | $(1,2,3,4)$ | $1$ |