Properties

Label 3.32353344.6t8.a.a
Dimension $3$
Group $S_4$
Conductor $32353344$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(32353344\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 79^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.17064.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.17064.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 3x^{2} - 4x - 6 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 192 + 101\cdot 389 + 81\cdot 389^{2} + 102\cdot 389^{3} + 310\cdot 389^{4} +O(389^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 294 + 353\cdot 389 + 96\cdot 389^{2} + 97\cdot 389^{3} + 99\cdot 389^{4} +O(389^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 321 + 343\cdot 389 + 354\cdot 389^{2} + 125\cdot 389^{3} + 188\cdot 389^{4} +O(389^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 360 + 367\cdot 389 + 244\cdot 389^{2} + 63\cdot 389^{3} + 180\cdot 389^{4} +O(389^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$