Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(776\)\(\medspace = 2^{3} \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.75272.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | even |
Determinant: | 1.776.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{2}, \sqrt{97})\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} + 13x^{2} + 18 \)
|
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ | $=$ |
\( 14 + 24\cdot 31 + 5\cdot 31^{2} + 2\cdot 31^{3} + 28\cdot 31^{4} + 2\cdot 31^{5} +O(31^{6})\)
|
$r_{ 2 }$ | $=$ |
\( 15 + 4\cdot 31 + 14\cdot 31^{2} + 12\cdot 31^{3} + 14\cdot 31^{4} + 30\cdot 31^{5} +O(31^{6})\)
|
$r_{ 3 }$ | $=$ |
\( 16 + 26\cdot 31 + 16\cdot 31^{2} + 18\cdot 31^{3} + 16\cdot 31^{4} +O(31^{6})\)
|
$r_{ 4 }$ | $=$ |
\( 17 + 6\cdot 31 + 25\cdot 31^{2} + 28\cdot 31^{3} + 2\cdot 31^{4} + 28\cdot 31^{5} +O(31^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ | ✓ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ | |
$2$ | $2$ | $(1,4)$ | $0$ | |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |