Normalized defining polynomial
\( x^{4} - 2x^{3} - 51x^{2} + 52x + 482 \)
Invariants
Degree: | $4$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(602176\)
\(\medspace = 2^{6}\cdot 97^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(27.86\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}97^{1/2}\approx 27.85677655436824$ | ||
Ramified primes: |
\(2\), \(97\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(776=2^{3}\cdot 97\) | ||
Dirichlet character group: | $\lbrace$$\chi_{776}(1,·)$, $\chi_{776}(193,·)$, $\chi_{776}(389,·)$, $\chi_{776}(581,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{89}a^{3}+\frac{43}{89}a^{2}+\frac{15}{89}a+\frac{15}{89}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{2}{89}a^{3}-\frac{3}{89}a^{2}-\frac{59}{89}a-\frac{59}{89}$, $\frac{18}{89}a^{3}-\frac{27}{89}a^{2}-\frac{709}{89}a+\frac{359}{89}$, $\frac{2276}{89}a^{3}-\frac{3414}{89}a^{2}-\frac{168424}{89}a-\frac{413975}{89}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 98.0626415111 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{0}\cdot 98.0626415111 \cdot 1}{2\cdot\sqrt{602176}}\cr\approx \mathstrut & 1.01095506712 \end{aligned}\]
Galois group
An abelian group of order 4 |
The 4 conjugacy class representatives for $C_2^2$ |
Character table for $C_2^2$ |
Intermediate fields
\(\Q(\sqrt{194}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{97}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Multiplicative Galois module structure
$U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A_1$ $\oplus$ $A_2$ $\oplus$ $A_3$ |
Galois action is Type I (ii) |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
\(97\)
| 97.2.1.1 | $x^{2} + 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
97.2.1.1 | $x^{2} + 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |