Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(680\)\(\medspace = 2^{3} \cdot 5 \cdot 17 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.7860800.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.680.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$:
\( x^{2} + 42x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 36 + 8\cdot 43 + 29\cdot 43^{2} + 39\cdot 43^{3} + 23\cdot 43^{4} +O(43^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 15 a + 1 + \left(23 a + 22\right)\cdot 43 + \left(31 a + 13\right)\cdot 43^{2} + \left(7 a + 9\right)\cdot 43^{3} + \left(26 a + 9\right)\cdot 43^{4} +O(43^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 28 a + 16 + \left(19 a + 30\right)\cdot 43 + \left(11 a + 21\right)\cdot 43^{2} + \left(35 a + 28\right)\cdot 43^{3} + \left(16 a + 27\right)\cdot 43^{4} +O(43^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 33 a + 28 + \left(26 a + 41\right)\cdot 43 + \left(26 a + 10\right)\cdot 43^{2} + \left(15 a + 7\right)\cdot 43^{3} + \left(13 a + 41\right)\cdot 43^{4} +O(43^{5})\)
|
$r_{ 5 }$ | $=$ |
\( 10 a + 18 + \left(16 a + 35\right)\cdot 43 + \left(16 a + 10\right)\cdot 43^{2} + \left(27 a + 39\right)\cdot 43^{3} + \left(29 a + 38\right)\cdot 43^{4} +O(43^{5})\)
|
$r_{ 6 }$ | $=$ |
\( 31 + 33\cdot 43 + 42\cdot 43^{2} + 4\cdot 43^{3} + 31\cdot 43^{4} +O(43^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-2$ |
$3$ | $2$ | $(1,4)(2,5)(3,6)$ | $0$ |
$3$ | $2$ | $(2,3)(4,5)$ | $0$ |
$2$ | $3$ | $(1,2,3)(4,6,5)$ | $-1$ |
$2$ | $6$ | $(1,4,2,6,3,5)$ | $1$ |