Properties

Label 2.680.6t3.a
Dimension $2$
Group $D_{6}$
Conductor $680$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(680\)\(\medspace = 2^{3} \cdot 5 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.7860800.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.680.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: \( x^{2} + 42x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 36 + 8\cdot 43 + 29\cdot 43^{2} + 39\cdot 43^{3} + 23\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 a + 1 + \left(23 a + 22\right)\cdot 43 + \left(31 a + 13\right)\cdot 43^{2} + \left(7 a + 9\right)\cdot 43^{3} + \left(26 a + 9\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 28 a + 16 + \left(19 a + 30\right)\cdot 43 + \left(11 a + 21\right)\cdot 43^{2} + \left(35 a + 28\right)\cdot 43^{3} + \left(16 a + 27\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 33 a + 28 + \left(26 a + 41\right)\cdot 43 + \left(26 a + 10\right)\cdot 43^{2} + \left(15 a + 7\right)\cdot 43^{3} + \left(13 a + 41\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 10 a + 18 + \left(16 a + 35\right)\cdot 43 + \left(16 a + 10\right)\cdot 43^{2} + \left(27 a + 39\right)\cdot 43^{3} + \left(29 a + 38\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 31 + 33\cdot 43 + 42\cdot 43^{2} + 4\cdot 43^{3} + 31\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,4)(2,5)(3,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-2$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$3$ $2$ $(2,3)(4,5)$ $0$
$2$ $3$ $(1,2,3)(4,6,5)$ $-1$
$2$ $6$ $(1,4,2,6,3,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.