Basic invariants
| Dimension: | $2$ |
| Group: | $D_{6}$ |
| Conductor: | \(2695\)\(\medspace = 5 \cdot 7^{2} \cdot 11 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.2.36315125.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{6}$ |
| Parity: | odd |
| Projective image: | $S_3$ |
| Projective field: | Galois closure of 3.1.2695.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{2} + 18x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 10\cdot 19 + 12\cdot 19^{2} + 4\cdot 19^{3} + 18\cdot 19^{4} + 3\cdot 19^{5} + 4\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 2 }$ | $=$ |
\( 1 + 9\cdot 19 + 6\cdot 19^{2} + 14\cdot 19^{3} + 15\cdot 19^{5} + 14\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 3 }$ | $=$ |
\( 16 a + \left(4 a + 9\right)\cdot 19 + \left(13 a + 3\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + 8\cdot 19^{4} + \left(3 a + 18\right)\cdot 19^{5} + \left(14 a + 17\right)\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 4 }$ | $=$ |
\( 3 a + 1 + \left(14 a + 10\right)\cdot 19 + \left(5 a + 15\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(18 a + 10\right)\cdot 19^{4} + 15 a\cdot 19^{5} + \left(4 a + 1\right)\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 5 }$ | $=$ |
\( 3 a + 16 + \left(14 a + 16\right)\cdot 19 + \left(5 a + 11\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(18 a + 3\right)\cdot 19^{4} + \left(15 a + 2\right)\cdot 19^{5} + \left(4 a + 10\right)\cdot 19^{6} +O(19^{7})\)
|
| $r_{ 6 }$ | $=$ |
\( 16 a + 4 + \left(4 a + 2\right)\cdot 19 + \left(13 a + 7\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + 15\cdot 19^{4} + \left(3 a + 16\right)\cdot 19^{5} + \left(14 a + 8\right)\cdot 19^{6} +O(19^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-2$ |
| $3$ | $2$ | $(3,5)(4,6)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ |
| $2$ | $6$ | $(1,4,5,2,3,6)$ | $1$ |