Properties

Label 2.2695.6t3.b
Dimension $2$
Group $D_{6}$
Conductor $2695$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(2695\)\(\medspace = 5 \cdot 7^{2} \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.36315125.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.2695.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 10\cdot 19 + 12\cdot 19^{2} + 4\cdot 19^{3} + 18\cdot 19^{4} + 3\cdot 19^{5} + 4\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 1 + 9\cdot 19 + 6\cdot 19^{2} + 14\cdot 19^{3} + 15\cdot 19^{5} + 14\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 a + \left(4 a + 9\right)\cdot 19 + \left(13 a + 3\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + 8\cdot 19^{4} + \left(3 a + 18\right)\cdot 19^{5} + \left(14 a + 17\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 3 a + 1 + \left(14 a + 10\right)\cdot 19 + \left(5 a + 15\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(18 a + 10\right)\cdot 19^{4} + 15 a\cdot 19^{5} + \left(4 a + 1\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 16 + \left(14 a + 16\right)\cdot 19 + \left(5 a + 11\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(18 a + 3\right)\cdot 19^{4} + \left(15 a + 2\right)\cdot 19^{5} + \left(4 a + 10\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 16 a + 4 + \left(4 a + 2\right)\cdot 19 + \left(13 a + 7\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + 15\cdot 19^{4} + \left(3 a + 16\right)\cdot 19^{5} + \left(14 a + 8\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(3,5)(4,6)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$3$ $2$ $(3,5)(4,6)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$2$ $3$ $(1,3,5)(2,4,6)$ $-1$
$2$ $6$ $(1,4,5,2,3,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.