Properties

Label 2695.1.g.e
Level $2695$
Weight $1$
Character orbit 2695.g
Self dual yes
Analytic conductor $1.345$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -55
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2695,1,Mod(1814,2695)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2695.1814"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 385)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2695.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.36315125.1
Stark unit: Root of $x^{6} - 4346502x^{5} - 4356698177x^{4} - 18900801725364x^{3} - 4356698177x^{2} - 4346502x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{5} - q^{8} + q^{9} + q^{10} + q^{11} + q^{13} - q^{16} - 2 q^{17} + q^{18} + q^{22} + q^{25} + q^{26} - q^{31} - 2 q^{34} - q^{40} + q^{43} + q^{45} + q^{50} + q^{55} - q^{59}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1814.1
0
1.00000 0 0 1.00000 0 0 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2695.1.g.e 1
5.b even 2 1 2695.1.g.b 1
7.b odd 2 1 2695.1.g.d 1
7.c even 3 2 385.1.q.a 2
7.d odd 6 2 2695.1.q.a 2
11.b odd 2 1 2695.1.g.b 1
21.h odd 6 2 3465.1.cd.b 2
35.c odd 2 1 2695.1.g.a 1
35.i odd 6 2 2695.1.q.d 2
35.j even 6 2 385.1.q.b yes 2
35.l odd 12 4 1925.1.w.c 4
55.d odd 2 1 CM 2695.1.g.e 1
77.b even 2 1 2695.1.g.a 1
77.h odd 6 2 385.1.q.b yes 2
77.i even 6 2 2695.1.q.d 2
105.o odd 6 2 3465.1.cd.a 2
231.l even 6 2 3465.1.cd.a 2
385.h even 2 1 2695.1.g.d 1
385.o even 6 2 2695.1.q.a 2
385.q odd 6 2 385.1.q.a 2
385.bc even 12 4 1925.1.w.c 4
1155.bo even 6 2 3465.1.cd.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
385.1.q.a 2 7.c even 3 2
385.1.q.a 2 385.q odd 6 2
385.1.q.b yes 2 35.j even 6 2
385.1.q.b yes 2 77.h odd 6 2
1925.1.w.c 4 35.l odd 12 4
1925.1.w.c 4 385.bc even 12 4
2695.1.g.a 1 35.c odd 2 1
2695.1.g.a 1 77.b even 2 1
2695.1.g.b 1 5.b even 2 1
2695.1.g.b 1 11.b odd 2 1
2695.1.g.d 1 7.b odd 2 1
2695.1.g.d 1 385.h even 2 1
2695.1.g.e 1 1.a even 1 1 trivial
2695.1.g.e 1 55.d odd 2 1 CM
2695.1.q.a 2 7.d odd 6 2
2695.1.q.a 2 385.o even 6 2
2695.1.q.d 2 35.i odd 6 2
2695.1.q.d 2 77.i even 6 2
3465.1.cd.a 2 105.o odd 6 2
3465.1.cd.a 2 231.l even 6 2
3465.1.cd.b 2 21.h odd 6 2
3465.1.cd.b 2 1155.bo even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2695, [\chi])\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display
\( T_{31} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 1 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 1 \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less