Properties

Label 2.532.6t5.d
Dimension 22
Group S3×C3S_3\times C_3
Conductor 532532
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:S3×C3S_3\times C_3
Conductor:532532=22719\medspace = 2^{2} \cdot 7 \cdot 19
Artin number field: Galois closure of 6.0.5377456.2
Galois orbit size: 22
Smallest permutation container: S3×C3S_3\times C_3
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.3724.2

Galois action

Roots of defining polynomial

The roots of ff are computed in an extension of Q13\Q_{ 13 } to precision 8.
Minimal polynomial of a generator aa of KK over Q13\mathbb{Q}_{ 13 }: x2+12x+2 x^{2} + 12x + 2 Copy content Toggle raw display
Roots:
r1r_{ 1 } == a+7a13+(10a+1)132+(5a+12)133+(8a+2)134+(11a+11)135+(2a+9)136+(10a+9)137+O(138) a + 7 a\cdot 13 + \left(10 a + 1\right)\cdot 13^{2} + \left(5 a + 12\right)\cdot 13^{3} + \left(8 a + 2\right)\cdot 13^{4} + \left(11 a + 11\right)\cdot 13^{5} + \left(2 a + 9\right)\cdot 13^{6} + \left(10 a + 9\right)\cdot 13^{7} +O(13^{8}) Copy content Toggle raw display
r2r_{ 2 } == 12a+1+(5a+6)13+(2a+4)132+(7a+7)133+(4a+5)134+(a+1)135+(10a+1)136+(2a+4)137+O(138) 12 a + 1 + \left(5 a + 6\right)\cdot 13 + \left(2 a + 4\right)\cdot 13^{2} + \left(7 a + 7\right)\cdot 13^{3} + \left(4 a + 5\right)\cdot 13^{4} + \left(a + 1\right)\cdot 13^{5} + \left(10 a + 1\right)\cdot 13^{6} + \left(2 a + 4\right)\cdot 13^{7} +O(13^{8}) Copy content Toggle raw display
r3r_{ 3 } == 7a+5+(9a+10)13+(2a+12)132+(2a+7)133+5134+12a135+7a136+(9a+5)137+O(138) 7 a + 5 + \left(9 a + 10\right)\cdot 13 + \left(2 a + 12\right)\cdot 13^{2} + \left(2 a + 7\right)\cdot 13^{3} + 5\cdot 13^{4} + 12 a\cdot 13^{5} + 7 a\cdot 13^{6} + \left(9 a + 5\right)\cdot 13^{7} +O(13^{8}) Copy content Toggle raw display
r4r_{ 4 } == 10a+6+(7a+12)13+(5a+1)132+(11a+12)133+(5a+6)134+(a+2)135+10136+(9a+8)137+O(138) 10 a + 6 + \left(7 a + 12\right)\cdot 13 + \left(5 a + 1\right)\cdot 13^{2} + \left(11 a + 12\right)\cdot 13^{3} + \left(5 a + 6\right)\cdot 13^{4} + \left(a + 2\right)\cdot 13^{5} + 10\cdot 13^{6} + \left(9 a + 8\right)\cdot 13^{7} +O(13^{8}) Copy content Toggle raw display
r5r_{ 5 } == 6a+12+(3a+12)13+(10a+5)132+(10a+7)133+(12a+3)134+12135+(5a+8)136+(3a+6)137+O(138) 6 a + 12 + \left(3 a + 12\right)\cdot 13 + \left(10 a + 5\right)\cdot 13^{2} + \left(10 a + 7\right)\cdot 13^{3} + \left(12 a + 3\right)\cdot 13^{4} + 12\cdot 13^{5} + \left(5 a + 8\right)\cdot 13^{6} + \left(3 a + 6\right)\cdot 13^{7} +O(13^{8}) Copy content Toggle raw display
r6r_{ 6 } == 3a+3+(5a+10)13+(7a+12)132+(a+4)133+(7a+1)134+(11a+11)135+(12a+8)136+(3a+4)137+O(138) 3 a + 3 + \left(5 a + 10\right)\cdot 13 + \left(7 a + 12\right)\cdot 13^{2} + \left(a + 4\right)\cdot 13^{3} + \left(7 a + 1\right)\cdot 13^{4} + \left(11 a + 11\right)\cdot 13^{5} + \left(12 a + 8\right)\cdot 13^{6} + \left(3 a + 4\right)\cdot 13^{7} +O(13^{8}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(2,6,5)(2,6,5)
(1,3,4)(2,6,5)(1,3,4)(2,6,5)
(1,5,3,6,4,2)(1,5,3,6,4,2)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character values
c1c1 c2c2
11 11 ()() 22 22
33 22 (1,6)(2,3)(4,5)(1,6)(2,3)(4,5) 00 00
11 33 (1,3,4)(2,5,6)(1,3,4)(2,5,6) 2ζ32 \zeta_{3} 2ζ32-2 \zeta_{3} - 2
11 33 (1,4,3)(2,6,5)(1,4,3)(2,6,5) 2ζ32-2 \zeta_{3} - 2 2ζ32 \zeta_{3}
22 33 (1,3,4)(2,6,5)(1,3,4)(2,6,5) 1-1 1-1
22 33 (2,6,5)(2,6,5) ζ3-\zeta_{3} ζ3+1\zeta_{3} + 1
22 33 (2,5,6)(2,5,6) ζ3+1\zeta_{3} + 1 ζ3-\zeta_{3}
33 66 (1,5,3,6,4,2)(1,5,3,6,4,2) 00 00
33 66 (1,2,4,6,3,5)(1,2,4,6,3,5) 00 00
The blue line marks the conjugacy class containing complex conjugation.