Properties

Label 4-532e2-1.1-c0e2-0-1
Degree $4$
Conductor $283024$
Sign $1$
Analytic cond. $0.0704916$
Root an. cond. $0.515269$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 9-s − 2·11-s + 17-s − 19-s + 23-s + 25-s + 2·35-s − 2·43-s − 45-s − 2·47-s + 3·49-s − 2·55-s − 2·61-s − 2·63-s − 2·73-s − 4·77-s − 2·83-s + 85-s − 95-s + 2·99-s + 101-s + 115-s + 2·119-s + 121-s + 2·125-s + ⋯
L(s)  = 1  + 5-s + 2·7-s − 9-s − 2·11-s + 17-s − 19-s + 23-s + 25-s + 2·35-s − 2·43-s − 45-s − 2·47-s + 3·49-s − 2·55-s − 2·61-s − 2·63-s − 2·73-s − 4·77-s − 2·83-s + 85-s − 95-s + 2·99-s + 101-s + 115-s + 2·119-s + 121-s + 2·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(283024\)    =    \(2^{4} \cdot 7^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.0704916\)
Root analytic conductor: \(0.515269\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 283024,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9551621727\)
\(L(\frac12)\) \(\approx\) \(0.9551621727\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
19$C_2$ \( 1 + T + T^{2} \)
good3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 + T + T^{2} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.13959054975195862916308810271, −10.80586181852080632349541324149, −10.43417693083198184373789194958, −10.16644384465903336371900381510, −9.564291806996441187246636934588, −8.918145196570350113020173579221, −8.431050937786117325797763253107, −8.297768829904437201319863794593, −7.84483887038179014517738524124, −7.33882750159943203159656852194, −6.77891612716172954239535247220, −6.02470916889726814118017157017, −5.44669032102847998337813284477, −5.43626596634302760288955360460, −4.66490704319140395632118686786, −4.57714236045013349233443617036, −3.07235717316408020694215280717, −2.97858536469963990867659022587, −2.02971190226874062559952940153, −1.54675859337263129998469221624, 1.54675859337263129998469221624, 2.02971190226874062559952940153, 2.97858536469963990867659022587, 3.07235717316408020694215280717, 4.57714236045013349233443617036, 4.66490704319140395632118686786, 5.43626596634302760288955360460, 5.44669032102847998337813284477, 6.02470916889726814118017157017, 6.77891612716172954239535247220, 7.33882750159943203159656852194, 7.84483887038179014517738524124, 8.297768829904437201319863794593, 8.431050937786117325797763253107, 8.918145196570350113020173579221, 9.564291806996441187246636934588, 10.16644384465903336371900381510, 10.43417693083198184373789194958, 10.80586181852080632349541324149, 11.13959054975195862916308810271

Graph of the $Z$-function along the critical line