Basic invariants
Dimension: | $2$ |
Group: | $S_3\times C_3$ |
Conductor: | \(1539\)\(\medspace = 3^{4} \cdot 19 \) |
Artin number field: | Galois closure of 6.0.7105563.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3\times C_3$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.1083.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{2} + 21x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 2 a + \left(11 a + 11\right)\cdot 23 + 9 a\cdot 23^{2} + \left(a + 16\right)\cdot 23^{3} + \left(17 a + 12\right)\cdot 23^{4} + \left(21 a + 3\right)\cdot 23^{5} + \left(4 a + 18\right)\cdot 23^{6} + \left(8 a + 5\right)\cdot 23^{7} +O(23^{8})\)
|
$r_{ 2 }$ | $=$ |
\( 21 a + 4 + \left(11 a + 8\right)\cdot 23 + \left(13 a + 8\right)\cdot 23^{2} + \left(21 a + 9\right)\cdot 23^{3} + \left(5 a + 22\right)\cdot 23^{4} + \left(a + 6\right)\cdot 23^{5} + \left(18 a + 6\right)\cdot 23^{6} + \left(14 a + 17\right)\cdot 23^{7} +O(23^{8})\)
|
$r_{ 3 }$ | $=$ |
\( 7 a + 6 + \left(13 a + 10\right)\cdot 23 + \left(11 a + 14\right)\cdot 23^{2} + \left(20 a + 11\right)\cdot 23^{3} + \left(20 a + 16\right)\cdot 23^{4} + \left(15 a + 18\right)\cdot 23^{5} + \left(15 a + 16\right)\cdot 23^{6} + \left(6 a + 17\right)\cdot 23^{7} +O(23^{8})\)
|
$r_{ 4 }$ | $=$ |
\( 9 a + 22 + \left(a + 7\right)\cdot 23 + \left(21 a + 13\right)\cdot 23^{2} + \left(21 a + 18\right)\cdot 23^{3} + \left(14 a + 8\right)\cdot 23^{4} + \left(14 a + 9\right)\cdot 23^{5} + \left(20 a + 7\right)\cdot 23^{6} + \left(14 a + 13\right)\cdot 23^{7} +O(23^{8})\)
|
$r_{ 5 }$ | $=$ |
\( 14 a + 17 + \left(21 a + 1\right)\cdot 23 + \left(a + 8\right)\cdot 23^{2} + \left(a + 18\right)\cdot 23^{3} + \left(8 a + 16\right)\cdot 23^{4} + 8 a\cdot 23^{5} + \left(2 a + 11\right)\cdot 23^{6} + \left(8 a + 22\right)\cdot 23^{7} +O(23^{8})\)
|
$r_{ 6 }$ | $=$ |
\( 16 a + 20 + \left(9 a + 6\right)\cdot 23 + \left(11 a + 1\right)\cdot 23^{2} + \left(2 a + 18\right)\cdot 23^{3} + \left(2 a + 14\right)\cdot 23^{4} + \left(7 a + 6\right)\cdot 23^{5} + \left(7 a + 9\right)\cdot 23^{6} + \left(16 a + 15\right)\cdot 23^{7} +O(23^{8})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ |
$3$ | $2$ | $(1,6)(2,5)(3,4)$ | $0$ | $0$ |
$1$ | $3$ | $(1,5,3)(2,4,6)$ | $2 \zeta_{3}$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,3,5)(2,6,4)$ | $-2 \zeta_{3} - 2$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(1,5,3)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,3,5)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ | $-1$ |
$3$ | $6$ | $(1,2,5,4,3,6)$ | $0$ | $0$ |
$3$ | $6$ | $(1,6,3,4,5,2)$ | $0$ | $0$ |