Properties

Label 4-1539e2-1.1-c0e2-0-7
Degree $4$
Conductor $2368521$
Sign $1$
Analytic cond. $0.589917$
Root an. cond. $0.876390$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 7-s − 2·13-s + 3·16-s + 2·19-s − 25-s + 2·28-s + 31-s − 2·37-s − 2·43-s + 49-s − 4·52-s + 61-s + 4·64-s − 2·67-s + 73-s + 4·76-s − 2·79-s − 2·91-s + 4·97-s − 2·100-s + 103-s − 2·109-s + 3·112-s − 121-s + 2·124-s + 127-s + ⋯
L(s)  = 1  + 2·4-s + 7-s − 2·13-s + 3·16-s + 2·19-s − 25-s + 2·28-s + 31-s − 2·37-s − 2·43-s + 49-s − 4·52-s + 61-s + 4·64-s − 2·67-s + 73-s + 4·76-s − 2·79-s − 2·91-s + 4·97-s − 2·100-s + 103-s − 2·109-s + 3·112-s − 121-s + 2·124-s + 127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2368521\)    =    \(3^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.589917\)
Root analytic conductor: \(0.876390\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2368521,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.062845736\)
\(L(\frac12)\) \(\approx\) \(2.062845736\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$ \( ( 1 - T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.957234692703789338578407344723, −9.756974307907275416324768914426, −8.911818576233452463272809483768, −8.676376175225585669733257482283, −7.906277925318936395148503235966, −7.75709023521877443322407063983, −7.39170794713973624650260959775, −7.25727411380110451526731399073, −6.54878749917281417990758012606, −6.47987503532712501661389572456, −5.55592948597905320287143075294, −5.47842805358497058530141016389, −4.96197525067685487367701666691, −4.63151513257975307605923674579, −3.50818336541310667620523576584, −3.50210846922613935971651846994, −2.55077014801167025377895925272, −2.49616759794252448577206942042, −1.68354271794708447845707629030, −1.33439010228231421956922834015, 1.33439010228231421956922834015, 1.68354271794708447845707629030, 2.49616759794252448577206942042, 2.55077014801167025377895925272, 3.50210846922613935971651846994, 3.50818336541310667620523576584, 4.63151513257975307605923674579, 4.96197525067685487367701666691, 5.47842805358497058530141016389, 5.55592948597905320287143075294, 6.47987503532712501661389572456, 6.54878749917281417990758012606, 7.25727411380110451526731399073, 7.39170794713973624650260959775, 7.75709023521877443322407063983, 7.906277925318936395148503235966, 8.676376175225585669733257482283, 8.911818576233452463272809483768, 9.756974307907275416324768914426, 9.957234692703789338578407344723

Graph of the $Z$-function along the critical line