Properties

Label 2.2667.4t3.e
Dimension $2$
Group $D_{4}$
Conductor $2667$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(2667\)\(\medspace = 3 \cdot 7 \cdot 127 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.8001.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{889})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 17 + 47\cdot 97 + 38\cdot 97^{2} + 70\cdot 97^{3} + 92\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 46 + 20\cdot 97 + 3\cdot 97^{2} + 86\cdot 97^{3} + 17\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 52 + 76\cdot 97 + 93\cdot 97^{2} + 10\cdot 97^{3} + 79\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 81 + 49\cdot 97 + 58\cdot 97^{2} + 26\cdot 97^{3} + 4\cdot 97^{4} +O(97^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.