Properties

Label 2-2667-2667.2666-c0-0-0
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $1.33100$
Root an. cond. $1.15369$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 7-s + 9-s − 12-s + 16-s − 21-s + 25-s − 27-s + 28-s + 36-s − 2·37-s − 48-s + 49-s + 63-s + 64-s − 75-s − 2·79-s + 81-s − 84-s + 2·97-s + 100-s − 108-s + 2·111-s + 112-s + ⋯
L(s)  = 1  − 3-s + 4-s + 7-s + 9-s − 12-s + 16-s − 21-s + 25-s − 27-s + 28-s + 36-s − 2·37-s − 48-s + 49-s + 63-s + 64-s − 75-s − 2·79-s + 81-s − 84-s + 2·97-s + 100-s − 108-s + 2·111-s + 112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(1.33100\)
Root analytic conductor: \(1.15369\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2667} (2666, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.318939808\)
\(L(\frac12)\) \(\approx\) \(1.318939808\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
127 \( 1 + T \)
good2 \( ( 1 - T )( 1 + T ) \)
5 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( 1 + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T^{2} \)
29 \( 1 + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 + T )^{2} \)
41 \( 1 + T^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 + T^{2} \)
53 \( 1 + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 + T )^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.970035365454316184859119886039, −8.132164708396610233804514713137, −7.26965357009233319984836059413, −6.84051775572323452688870002974, −5.91833266980848018855755014639, −5.25612134274625659774203203883, −4.50656408974110709396398233880, −3.37141723077882067454225868014, −2.10574891386774616326482004588, −1.24221375794159463688402334047, 1.24221375794159463688402334047, 2.10574891386774616326482004588, 3.37141723077882067454225868014, 4.50656408974110709396398233880, 5.25612134274625659774203203883, 5.91833266980848018855755014639, 6.84051775572323452688870002974, 7.26965357009233319984836059413, 8.132164708396610233804514713137, 8.970035365454316184859119886039

Graph of the $Z$-function along the critical line