Properties

Label 2.3528.8t11.a.b
Dimension $2$
Group $Q_8:C_2$
Conductor $3528$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Artin stem field: Galois closure of 8.0.5489031744.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.8.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{6}, \sqrt{-7})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} - 16x^{6} + 26x^{5} + 73x^{4} - 176x^{3} + 38x^{2} + 55x + 67 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 28\cdot 67 + 15\cdot 67^{3} + 55\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 1 + 45\cdot 67 + 38\cdot 67^{2} + 39\cdot 67^{3} + 50\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 + 64\cdot 67 + 41\cdot 67^{2} + 3\cdot 67^{3} + 8\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 29 + 52\cdot 67 + 40\cdot 67^{2} + 9\cdot 67^{3} + 44\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 51 + 66\cdot 67 + 64\cdot 67^{2} + 43\cdot 67^{3} + 32\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 57 + 55\cdot 67 + 40\cdot 67^{2} + 67^{3} + 9\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 63 + 49\cdot 67 + 34\cdot 67^{2} + 13\cdot 67^{3} + 6\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 64 + 39\cdot 67 + 5\cdot 67^{2} + 7\cdot 67^{3} + 62\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,7)(6,8)$
$(1,7)(2,6)(3,8)(4,5)$
$(1,6)(2,4)(3,7)(5,8)$
$(1,5)(2,3)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-2$
$2$$2$$(1,7)(2,6)(3,8)(4,5)$$0$
$2$$2$$(1,6)(2,4)(3,7)(5,8)$$0$
$2$$2$$(4,7)(6,8)$$0$
$1$$4$$(1,3,5,2)(4,6,7,8)$$2 \zeta_{4}$
$1$$4$$(1,2,5,3)(4,8,7,6)$$-2 \zeta_{4}$
$2$$4$$(1,4,5,7)(2,8,3,6)$$0$
$2$$4$$(1,3,5,2)(4,8,7,6)$$0$
$2$$4$$(1,8,5,6)(2,7,3,4)$$0$