Properties

Label 2.2952.8t6.d.a
Dimension $2$
Group $D_{8}$
Conductor $2952$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(2952\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 41 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.0.205797003264.3
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.328.2t1.b.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.0.23616.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 4x^{7} - 6x^{6} + 32x^{5} + 43x^{4} - 96x^{3} - 282x^{2} + 120x + 600 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 4 + 7\cdot 401 + 85\cdot 401^{2} + 341\cdot 401^{3} + 303\cdot 401^{4} + 241\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 376\cdot 401 + 71\cdot 401^{2} + 241\cdot 401^{3} + 152\cdot 401^{4} + 38\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 109 + 94\cdot 401 + 237\cdot 401^{2} + 72\cdot 401^{3} + 96\cdot 401^{4} + 140\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 121 + 144\cdot 401 + 153\cdot 401^{2} + 188\cdot 401^{3} + 214\cdot 401^{4} + 64\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 140 + 112\cdot 401 + 140\cdot 401^{2} + 88\cdot 401^{3} + 63\cdot 401^{4} + 262\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 150 + 187\cdot 401 + 339\cdot 401^{2} + 299\cdot 401^{3} + 338\cdot 401^{4} + 157\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 313 + 146\cdot 401 + 373\cdot 401^{2} + 32\cdot 401^{3} + 184\cdot 401^{4} + 218\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 347 + 134\cdot 401 + 203\cdot 401^{2} + 339\cdot 401^{3} + 250\cdot 401^{4} + 79\cdot 401^{5} +O(401^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,2)(3,7,6,8)$
$(1,6,4,8,5,3,2,7)$
$(1,5)(2,4)(3,6)(7,8)$
$(1,4)(2,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)(7,8)$$-2$
$4$$2$$(1,4)(2,5)(7,8)$$0$
$4$$2$$(1,8)(2,3)(4,6)(5,7)$$0$
$2$$4$$(1,4,5,2)(3,7,6,8)$$0$
$2$$8$$(1,6,4,8,5,3,2,7)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,8,2,6,5,7,4,3)$$\zeta_{8}^{3} - \zeta_{8}$