| L(s) = 1 | + 2-s + 4-s + 1.41·7-s + 8-s − 1.41·13-s + 1.41·14-s + 16-s + 25-s − 1.41·26-s + 1.41·28-s − 1.41·29-s + 32-s − 41-s − 1.41·47-s + 1.00·49-s + 50-s − 1.41·52-s + 1.41·53-s + 1.41·56-s − 1.41·58-s − 2·59-s + 64-s + 1.41·71-s − 1.41·79-s − 82-s − 2.00·91-s − 1.41·94-s + ⋯ |
| L(s) = 1 | + 2-s + 4-s + 1.41·7-s + 8-s − 1.41·13-s + 1.41·14-s + 16-s + 25-s − 1.41·26-s + 1.41·28-s − 1.41·29-s + 32-s − 41-s − 1.41·47-s + 1.00·49-s + 50-s − 1.41·52-s + 1.41·53-s + 1.41·56-s − 1.41·58-s − 2·59-s + 64-s + 1.41·71-s − 1.41·79-s − 82-s − 2.00·91-s − 1.41·94-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.656960952\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.656960952\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + T \) |
| good | 5 | \( 1 - T^{2} \) |
| 7 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 1.41T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 + 2T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 1.41T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.795108392049218870596471507619, −7.904563491624194386018791466300, −7.39665976595689284788762076254, −6.66852359158943879725824155862, −5.57666228184439917912274110199, −4.96834404894689526998256234754, −4.48909992216036262057439910401, −3.39917044175867866512561792433, −2.36704556648750950079930593596, −1.56862462223279559615527180303,
1.56862462223279559615527180303, 2.36704556648750950079930593596, 3.39917044175867866512561792433, 4.48909992216036262057439910401, 4.96834404894689526998256234754, 5.57666228184439917912274110199, 6.66852359158943879725824155862, 7.39665976595689284788762076254, 7.904563491624194386018791466300, 8.795108392049218870596471507619