Properties

Label 2952.1.h.c
Level $2952$
Weight $1$
Character orbit 2952.h
Self dual yes
Analytic conductor $1.473$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -328
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2952,1,Mod(163,2952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2952.163"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2952 = 2^{3} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2952.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.47323991729\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.121032.1
Artin image: $D_8$
Artin field: Galois closure of 8.0.205797003264.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta q^{7} + q^{8} + \beta q^{13} - \beta q^{14} + q^{16} + q^{25} + \beta q^{26} - \beta q^{28} + \beta q^{29} + q^{32} - q^{41} + \beta q^{47} + q^{49} + q^{50} + \beta q^{52} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 2 q^{16} + 2 q^{25} + 2 q^{32} - 2 q^{41} + 2 q^{49} + 2 q^{50} - 4 q^{59} + 2 q^{64} - 2 q^{82} - 4 q^{91} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2952\mathbb{Z}\right)^\times\).

\(n\) \(1441\) \(1477\) \(2215\) \(2297\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
1.41421
−1.41421
1.00000 0 1.00000 0 0 −1.41421 1.00000 0 0
163.2 1.00000 0 1.00000 0 0 1.41421 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
328.c odd 2 1 CM by \(\Q(\sqrt{-82}) \)
8.d odd 2 1 inner
41.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2952.1.h.c yes 2
3.b odd 2 1 2952.1.h.b 2
8.d odd 2 1 inner 2952.1.h.c yes 2
24.f even 2 1 2952.1.h.b 2
41.b even 2 1 inner 2952.1.h.c yes 2
123.b odd 2 1 2952.1.h.b 2
328.c odd 2 1 CM 2952.1.h.c yes 2
984.p even 2 1 2952.1.h.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2952.1.h.b 2 3.b odd 2 1
2952.1.h.b 2 24.f even 2 1
2952.1.h.b 2 123.b odd 2 1
2952.1.h.b 2 984.p even 2 1
2952.1.h.c yes 2 1.a even 1 1 trivial
2952.1.h.c yes 2 8.d odd 2 1 inner
2952.1.h.c yes 2 41.b even 2 1 inner
2952.1.h.c yes 2 328.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2952, [\chi])\):

\( T_{7}^{2} - 2 \) Copy content Toggle raw display
\( T_{59} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 2 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 2 \) Copy content Toggle raw display
$53$ \( T^{2} - 2 \) Copy content Toggle raw display
$59$ \( (T + 2)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 2 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 2 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less