Properties

Label 2.1060.4t3.b
Dimension $2$
Group $D_{4}$
Conductor $1060$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(1060\)\(\medspace = 2^{2} \cdot 5 \cdot 53 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.4240.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{265})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 51 + 48\cdot 137 + 22\cdot 137^{2} + 104\cdot 137^{3} + 82\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 105 + 94\cdot 137 + 100\cdot 137^{2} + 97\cdot 137^{3} + 77\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 123 + 136\cdot 137 + 64\cdot 137^{2} + 97\cdot 137^{3} + 84\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 132 + 130\cdot 137 + 85\cdot 137^{2} + 111\cdot 137^{3} + 28\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.