Properties

Label 2.1764.8t11.a
Dimension $2$
Group $Q_8:C_2$
Conductor $1764$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Artin number field: Galois closure of 8.0.1372257936.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{3}, \sqrt{-7})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 6 + 101\cdot 109 + 100\cdot 109^{2} + 45\cdot 109^{3} + 23\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 100\cdot 109 + 46\cdot 109^{2} + 30\cdot 109^{3} + 34\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 22 + 92\cdot 109 + 35\cdot 109^{2} + 70\cdot 109^{3} + 96\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 + 73\cdot 109 + 67\cdot 109^{2} + 86\cdot 109^{3} + 39\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 43 + 45\cdot 109 + 8\cdot 109^{2} + 26\cdot 109^{3} + 106\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 56 + 61\cdot 109 + 67\cdot 109^{2} + 30\cdot 109^{3} + 47\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 74 + 33\cdot 109 + 34\cdot 109^{2} + 71\cdot 109^{3} + 63\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 96 + 37\cdot 109 + 74\cdot 109^{2} + 74\cdot 109^{3} + 24\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,6)$
$(1,6,7,4)(2,8,3,5)$
$(1,2,7,3)(4,5,6,8)$
$(1,7)(2,3)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $-2$ $-2$
$2$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $0$ $0$
$2$ $2$ $(1,7)(4,6)$ $0$ $0$
$2$ $2$ $(1,3)(2,7)(4,8)(5,6)$ $0$ $0$
$1$ $4$ $(1,6,7,4)(2,8,3,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,4,7,6)(2,5,3,8)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,2,7,3)(4,5,6,8)$ $0$ $0$
$2$ $4$ $(1,4,7,6)(2,8,3,5)$ $0$ $0$
$2$ $4$ $(1,5,7,8)(2,4,3,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.