Properties

Label 2.14080.8t6.d.b
Dimension $2$
Group $D_{8}$
Conductor $14080$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(14080\)\(\medspace = 2^{8} \cdot 5 \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.2.3489136640000.8
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.55.2t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.17600.2

Defining polynomial

$f(x)$$=$ \( x^{8} + 16x^{6} - 4x^{4} + 256x^{2} - 44 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 9.

Roots:
$r_{ 1 }$ $=$ \( 9 + 33\cdot 71^{2} + 7\cdot 71^{3} + 54\cdot 71^{4} + 41\cdot 71^{5} + 2\cdot 71^{6} + 12\cdot 71^{7} + 32\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 9\cdot 71 + 16\cdot 71^{2} + 38\cdot 71^{3} + 66\cdot 71^{4} + 29\cdot 71^{5} + 41\cdot 71^{6} + 55\cdot 71^{7} + 61\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 + 18\cdot 71 + 65\cdot 71^{2} + 52\cdot 71^{3} + 3\cdot 71^{4} + 55\cdot 71^{5} + 13\cdot 71^{6} + 42\cdot 71^{7} + 29\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 15 + 26\cdot 71 + 32\cdot 71^{2} + 6\cdot 71^{3} + 19\cdot 71^{4} + 71^{6} + 16\cdot 71^{7} + 59\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 56 + 44\cdot 71 + 38\cdot 71^{2} + 64\cdot 71^{3} + 51\cdot 71^{4} + 70\cdot 71^{5} + 69\cdot 71^{6} + 54\cdot 71^{7} + 11\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 57 + 52\cdot 71 + 5\cdot 71^{2} + 18\cdot 71^{3} + 67\cdot 71^{4} + 15\cdot 71^{5} + 57\cdot 71^{6} + 28\cdot 71^{7} + 41\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 60 + 61\cdot 71 + 54\cdot 71^{2} + 32\cdot 71^{3} + 4\cdot 71^{4} + 41\cdot 71^{5} + 29\cdot 71^{6} + 15\cdot 71^{7} + 9\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 62 + 70\cdot 71 + 37\cdot 71^{2} + 63\cdot 71^{3} + 16\cdot 71^{4} + 29\cdot 71^{5} + 68\cdot 71^{6} + 58\cdot 71^{7} + 38\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,7,8,2)(3,5,6,4)$
$(1,7)(2,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$8$$(1,5,2,3,8,4,7,6)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,7,5,8,6,2,4)$$-\zeta_{8}^{3} + \zeta_{8}$