Properties

Label 2.14080.8t6.d
Dimension $2$
Group $D_{8}$
Conductor $14080$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:\(14080\)\(\medspace = 2^{8} \cdot 5 \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.2.3489136640000.8
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.2.17600.2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ \( 9 + 33\cdot 71^{2} + 7\cdot 71^{3} + 54\cdot 71^{4} + 41\cdot 71^{5} + 2\cdot 71^{6} + 12\cdot 71^{7} + 32\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 9\cdot 71 + 16\cdot 71^{2} + 38\cdot 71^{3} + 66\cdot 71^{4} + 29\cdot 71^{5} + 41\cdot 71^{6} + 55\cdot 71^{7} + 61\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 + 18\cdot 71 + 65\cdot 71^{2} + 52\cdot 71^{3} + 3\cdot 71^{4} + 55\cdot 71^{5} + 13\cdot 71^{6} + 42\cdot 71^{7} + 29\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 15 + 26\cdot 71 + 32\cdot 71^{2} + 6\cdot 71^{3} + 19\cdot 71^{4} + 71^{6} + 16\cdot 71^{7} + 59\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 56 + 44\cdot 71 + 38\cdot 71^{2} + 64\cdot 71^{3} + 51\cdot 71^{4} + 70\cdot 71^{5} + 69\cdot 71^{6} + 54\cdot 71^{7} + 11\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 57 + 52\cdot 71 + 5\cdot 71^{2} + 18\cdot 71^{3} + 67\cdot 71^{4} + 15\cdot 71^{5} + 57\cdot 71^{6} + 28\cdot 71^{7} + 41\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 60 + 61\cdot 71 + 54\cdot 71^{2} + 32\cdot 71^{3} + 4\cdot 71^{4} + 41\cdot 71^{5} + 29\cdot 71^{6} + 15\cdot 71^{7} + 9\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 62 + 70\cdot 71 + 37\cdot 71^{2} + 63\cdot 71^{3} + 16\cdot 71^{4} + 29\cdot 71^{5} + 68\cdot 71^{6} + 58\cdot 71^{7} + 38\cdot 71^{8} +O(71^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,7,8,2)(3,5,6,4)$
$(1,7)(2,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$ $0$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$2$ $8$ $(1,5,2,3,8,4,7,6)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,3,7,5,8,6,2,4)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.