Properties

Label 2.1280.8t11.b
Dimension $2$
Group $Q_8:C_2$
Conductor $1280$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(1280\)\(\medspace = 2^{8} \cdot 5 \)
Artin number field: Galois closure of 8.0.419430400.3
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{5})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 12 + 4\cdot 41 + 41^{2} + 40\cdot 41^{3} + 31\cdot 41^{4} + 9\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 + 17\cdot 41 + 35\cdot 41^{2} + 39\cdot 41^{3} + 38\cdot 41^{4} + 27\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 35\cdot 41 + 34\cdot 41^{2} + 32\cdot 41^{3} + 40\cdot 41^{4} + 36\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 29\cdot 41 + 12\cdot 41^{2} + 8\cdot 41^{3} + 23\cdot 41^{4} + 18\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 + 11\cdot 41 + 28\cdot 41^{2} + 32\cdot 41^{3} + 17\cdot 41^{4} + 22\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 + 5\cdot 41 + 6\cdot 41^{2} + 8\cdot 41^{3} + 4\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 26 + 23\cdot 41 + 5\cdot 41^{2} + 41^{3} + 2\cdot 41^{4} + 13\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 29 + 36\cdot 41 + 39\cdot 41^{2} + 9\cdot 41^{4} + 31\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$ $0$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$ $0$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.