Properties

Label 2.1280.8t11.b.a
Dimension $2$
Group $Q_8:C_2$
Conductor $1280$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Artin stem field: Galois closure of 8.0.419430400.3
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.40.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{5})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 8x^{4} + 25 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 12 + 4\cdot 41 + 41^{2} + 40\cdot 41^{3} + 31\cdot 41^{4} + 9\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 + 17\cdot 41 + 35\cdot 41^{2} + 39\cdot 41^{3} + 38\cdot 41^{4} + 27\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 35\cdot 41 + 34\cdot 41^{2} + 32\cdot 41^{3} + 40\cdot 41^{4} + 36\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 29\cdot 41 + 12\cdot 41^{2} + 8\cdot 41^{3} + 23\cdot 41^{4} + 18\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 + 11\cdot 41 + 28\cdot 41^{2} + 32\cdot 41^{3} + 17\cdot 41^{4} + 22\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 + 5\cdot 41 + 6\cdot 41^{2} + 8\cdot 41^{3} + 4\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 26 + 23\cdot 41 + 5\cdot 41^{2} + 41^{3} + 2\cdot 41^{4} + 13\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 29 + 36\cdot 41 + 39\cdot 41^{2} + 9\cdot 41^{4} + 31\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(3,6)(4,5)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$1$$4$$(1,2,8,7)(3,5,6,4)$$-2 \zeta_{4}$
$1$$4$$(1,7,8,2)(3,4,6,5)$$2 \zeta_{4}$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.