Properties

Label 2.112896.8t5.h.a
Dimension $2$
Group $Q_8$
Conductor $112896$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(112896\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.0.359729184374784.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{6}, \sqrt{14})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 84x^{6} + 1890x^{4} + 10584x^{2} + 1764 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 5 + 29\cdot 43 + 2\cdot 43^{2} + 5\cdot 43^{3} + 34\cdot 43^{4} + 20\cdot 43^{5} + 26\cdot 43^{6} + 31\cdot 43^{7} + 39\cdot 43^{8} + 4\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 3\cdot 43 + 43^{2} + 39\cdot 43^{3} + 21\cdot 43^{4} + 28\cdot 43^{5} + 43^{6} + 10\cdot 43^{7} + 14\cdot 43^{8} + 3\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 + 14\cdot 43 + 24\cdot 43^{2} + 30\cdot 43^{3} + 6\cdot 43^{4} + 17\cdot 43^{5} + 18\cdot 43^{6} + 25\cdot 43^{7} + 32\cdot 43^{8} + 6\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 36\cdot 43 + 28\cdot 43^{3} + 43^{4} + 19\cdot 43^{5} + 8\cdot 43^{6} + 11\cdot 43^{7} + 9\cdot 43^{8} + 18\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 23 + 6\cdot 43 + 42\cdot 43^{2} + 14\cdot 43^{3} + 41\cdot 43^{4} + 23\cdot 43^{5} + 34\cdot 43^{6} + 31\cdot 43^{7} + 33\cdot 43^{8} + 24\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 31 + 28\cdot 43 + 18\cdot 43^{2} + 12\cdot 43^{3} + 36\cdot 43^{4} + 25\cdot 43^{5} + 24\cdot 43^{6} + 17\cdot 43^{7} + 10\cdot 43^{8} + 36\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 32 + 39\cdot 43 + 41\cdot 43^{2} + 3\cdot 43^{3} + 21\cdot 43^{4} + 14\cdot 43^{5} + 41\cdot 43^{6} + 32\cdot 43^{7} + 28\cdot 43^{8} + 39\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 38 + 13\cdot 43 + 40\cdot 43^{2} + 37\cdot 43^{3} + 8\cdot 43^{4} + 22\cdot 43^{5} + 16\cdot 43^{6} + 11\cdot 43^{7} + 3\cdot 43^{8} + 38\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$